4.8.8 Problems 701 to 800

Table 4.609: Third and higher order ode

#

ODE

Mathematica

Maple

Sympy

11547

\[ {} x^{2} y^{\prime \prime \prime \prime }-a y = 0 \]

11548

\[ {} x^{10} y^{\left (5\right )}-a y = 0 \]

11549

\[ {} x^{{5}/{2}} y^{\left (5\right )}-a y = 0 \]

11550

\[ {} \left (-a +x \right )^{5} \left (x -b \right )^{5} y^{\left (5\right )}-c y = 0 \]

11762

\[ {} y^{\prime \prime \prime }-a^{2} \left ({y^{\prime }}^{5}+2 {y^{\prime }}^{3}+y^{\prime }\right ) = 0 \]

11763

\[ {} y^{\prime \prime \prime }+y y^{\prime \prime }-{y^{\prime }}^{2}+1 = 0 \]

11764

\[ {} y^{\prime \prime \prime }-y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

11765

\[ {} y^{\prime \prime \prime }+a y y^{\prime \prime } = 0 \]

11766

\[ {} x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }+\left (2 x y-1\right ) y^{\prime }+y^{2}-f \left (x \right ) = 0 \]

11767

\[ {} x^{2} y^{\prime \prime \prime }+x \left (-1+y\right ) y^{\prime \prime }+x {y^{\prime }}^{2}+\left (1-y\right ) y^{\prime } = 0 \]

11768

\[ {} y y^{\prime \prime \prime }-y^{\prime } y^{\prime \prime }+y^{3} y^{\prime } = 0 \]

11769

\[ {} 4 y^{2} y^{\prime \prime \prime }-18 y y^{\prime } y^{\prime \prime }+15 {y^{\prime }}^{3} = 0 \]

11770

\[ {} 9 y^{2} y^{\prime \prime \prime }-45 y y^{\prime } y^{\prime \prime }+40 {y^{\prime }}^{3} = 0 \]

11771

\[ {} 2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0 \]

11772

\[ {} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-3 y^{\prime } {y^{\prime \prime }}^{2} = 0 \]

11773

\[ {} \left (1+{y^{\prime }}^{2}\right ) y^{\prime \prime \prime }-\left (3 y^{\prime }+a \right ) {y^{\prime \prime }}^{2} = 0 \]

11774

\[ {} y^{\prime \prime } y^{\prime \prime \prime }-a \sqrt {b^{2} {y^{\prime \prime }}^{2}+1} = 0 \]

11775

\[ {} y^{\prime } y^{\prime \prime \prime \prime }-y^{\prime \prime } y^{\prime \prime \prime }+{y^{\prime }}^{3} y^{\prime \prime \prime } = 0 \]

11776

\[ {} 3 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

11777

\[ {} 9 {y^{\prime \prime }}^{2} y^{\left (5\right )}-45 y^{\prime \prime } y^{\prime \prime \prime } y^{\prime \prime \prime \prime }+40 y^{\prime \prime \prime } = 0 \]

11779

\[ {} y^{\prime \prime \prime } = f \left (y\right ) \]

12842

\[ {} y^{\prime \prime \prime }-y^{\prime } = 0 \]

12843

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

12844

\[ {} 4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

12845

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

12846

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime }-y = 0 \]

12847

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0 \]

12848

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

12849

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = 0 \]

12850

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \]

12852

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x} \]

12855

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} \]

12857

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x \]

12864

\[ {} y^{\prime \prime \prime }-y = x^{2} \]

12865

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime } = 3 x^{2}+\sin \left (x \right ) \]

12866

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = {\mathrm e}^{x}+4 \]

12868

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = \cos \left (x \right ) \]

12869

\[ {} x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = x \ln \left (x \right ) \]

12870

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x} \]

12874

\[ {} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

12876

\[ {} y^{\prime \prime \prime }-4 y^{\prime } = x^{2}-3 \,{\mathrm e}^{2 x} \]

12877

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

12878

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2} \]

12879

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{2}-x \]

12882

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{3 x} \]

12884

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x} \]

12885

\[ {} y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2} \]

12910

\[ {} \left (x y^{\prime \prime \prime }-y^{\prime \prime }\right )^{2} = {y^{\prime \prime \prime }}^{2}+1 \]

12918

\[ {} \left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

12919

\[ {} x y^{\prime \prime \prime }-y^{\prime \prime }-x y^{\prime }+y = -x^{2}+1 \]

12920

\[ {} \left (x +2\right )^{2} y^{\prime \prime \prime }+\left (x +2\right ) y^{\prime \prime }+y^{\prime } = 1 \]

12923

\[ {} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = 0 \]

12924

\[ {} 2 x^{3} y y^{\prime \prime \prime }+6 x^{3} y^{\prime } y^{\prime \prime }+18 x^{2} y y^{\prime \prime }+18 x^{2} {y^{\prime }}^{2}+36 x y y^{\prime }+6 y^{2} = 0 \]

12927

\[ {} x^{2} y^{\prime \prime \prime }-5 x y^{\prime \prime }+\left (4 x^{4}+5\right ) y^{\prime }-8 x^{3} y = 0 \]

12936

\[ {} \left (x^{3}+1\right ) y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+18 x y^{\prime }+6 y = 0 \]

12943

\[ {} 4 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }+y^{\prime } = 0 \]

13098

\[ {} x^{\prime \prime \prime }+x^{\prime } = 0 \]

13099

\[ {} x^{\prime \prime \prime }+x^{\prime } = 1 \]

13100

\[ {} x^{\prime \prime \prime }+x^{\prime \prime } = 0 \]

13101

\[ {} x^{\prime \prime \prime }-x^{\prime }-8 x = 0 \]

13102

\[ {} x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2} \]

13103

\[ {} x^{\prime \prime \prime }-8 x = 0 \]

13104

\[ {} x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0 \]

13176

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

13177

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

13178

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

13189

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

13318

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

13319

\[ {} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 0 \]

13332

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

13333

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

13340

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 0 \]

13341

\[ {} 4 y^{\prime \prime \prime }+4 y^{\prime \prime }-7 y^{\prime }+2 y = 0 \]

13342

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

13343

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

13344

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

13345

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

13346

\[ {} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

13347

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0 \]

13348

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0 \]

13349

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0 \]

13350

\[ {} y^{\prime \prime \prime \prime }+y = 0 \]

13351

\[ {} y^{\left (5\right )} = 0 \]

13366

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

13367

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

13368

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

13369

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0 \]

13370

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

13371

\[ {} y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0 \]

13380

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+y^{\prime }-6 y = -18 x^{2}+1 \]

13381

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }-3 y^{\prime }-10 y = 8 x \,{\mathrm e}^{-2 x} \]

13382

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+3 y^{\prime }-5 y = 5 \sin \left (2 x \right )+10 x^{2}+3 x +7 \]

13383

\[ {} 4 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+3 y = 3 x^{3}-8 x \]

13386

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 4 \,{\mathrm e}^{x}-18 \,{\mathrm e}^{-x} \]

13387

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 9 \,{\mathrm e}^{2 x}-8 \,{\mathrm e}^{3 x} \]

13388

\[ {} y^{\prime \prime \prime }+y^{\prime } = 2 x^{2}+4 \sin \left (x \right ) \]

13389

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+2 y^{\prime \prime } = 3 \,{\mathrm e}^{-x}+6 \,{\mathrm e}^{2 x}-6 x \]

13390

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \,{\mathrm e}^{x}-4 \,{\mathrm e}^{2 x}+6 \,{\mathrm e}^{4 x} \]

13391

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = 3 x^{2} {\mathrm e}^{x}-7 \,{\mathrm e}^{x} \]

13394

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-3 y^{\prime \prime } = 18 x^{2}+16 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}-9 \]