5.27.18 Problems 1701 to 1800

Table 5.1201: Second order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

17732

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = \cos \left (t \right ) \]

17733

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{-t} \]

17734

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 18 \,{\mathrm e}^{-t} \]

17749

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}\le t \end {array}\right . \]

17750

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 1 & \pi \le t \le 2 \pi \\ 0 & t \le 2 \pi \end {array}\right . \]

17751

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \sin \left (t \right ) \]

17752

\[ {}y^{\prime \prime }+4 y = \sin \left (t \right )-\operatorname {Heaviside}\left (t -\pi \right ) \sin \left (t \right ) \]

17753

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <10 \\ 0 & 10\le t \end {array}\right . \]

17754

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \operatorname {Heaviside}\left (t -2\right ) \]

17755

\[ {}y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -3 \pi \right ) \]

17756

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \]

17757

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} \frac {t}{2} & 0\le t <6 \\ 3 & 6\le t \end {array}\right . \]

17758

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = \left \{\begin {array}{cc} \sin \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17759

\[ {}y^{\prime \prime }+4 y = \operatorname {Heaviside}\left (t -\pi \right )-\operatorname {Heaviside}\left (t -3 \pi \right ) \]

17762

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \frac {\left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right )}{2} \]

17763

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = \left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right . \]

17764

\[ {}u^{\prime \prime }+\frac {u^{\prime }}{4}+u = 2 \left (\left \{\begin {array}{cc} 1 & \frac {3}{2}\le t <\frac {5}{2} \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \]

17765

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \delta \left (t -\pi \right ) \]

17766

\[ {}y^{\prime \prime }+4 y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]

17767

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \delta \left (t -\pi \right )+\operatorname {Heaviside}\left (t -10\right ) \]

17768

\[ {}y^{\prime \prime }-y = -20 \delta \left (t -3\right ) \]

17769

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = \sin \left (t \right )+\delta \left (t -3 \pi \right ) \]

17770

\[ {}y^{\prime \prime }+4 y = \delta \left (t -4 \pi \right ) \]

17771

\[ {}y^{\prime \prime }+y = \delta \left (t -2 \pi \right ) \cos \left (t \right ) \]

17772

\[ {}y^{\prime \prime }+4 y = 2 \delta \left (t -\frac {\pi }{4}\right ) \]

17773

\[ {}y^{\prime \prime }+y = \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )+3 \delta \left (t -\frac {3 \pi }{2}\right )-\operatorname {Heaviside}\left (t -2 \pi \right ) \]

17774

\[ {}2 y^{\prime \prime }+y^{\prime }+6 y = \delta \left (t -\frac {\pi }{6}\right ) \sin \left (t \right ) \]

17775

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = \cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \]

17777

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{2}+y = \delta \left (t -1\right ) \]

17778

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{4}+y = \delta \left (t -1\right ) \]

17779

\[ {}y^{\prime \prime }+y = \delta \left (t -1\right ) \]

17780

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{5}+y = k \delta \left (t -1\right ) \]

17781

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{10}+y = k \delta \left (t -1\right ) \]

17782

\[ {}y^{\prime \prime }+w^{2} y = g \left (t \right ) \]

17783

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = \sin \left (\alpha t \right ) \]

17784

\[ {}4 y^{\prime \prime }+4 y^{\prime }+17 y = g \left (t \right ) \]

17785

\[ {}y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]

17786

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = g \left (t \right ) \]

17787

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (\alpha t \right ) \]

17790

\[ {}\frac {7 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]

17791

\[ {}\frac {8 y^{\prime \prime }}{5}+y = \operatorname {Heaviside}\left (t \right ) \]

17893

\[ {}y^{\prime \prime } = \sin \left (x \right ) \]

18016

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = x^{2} \]

18017

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{x}+{\mathrm e}^{2 x} \]

18020

\[ {}y^{\prime \prime }+4 y = \sin \left (2 x \right ) x \]

18021

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

18022

\[ {}y^{\prime \prime }-y = \frac {{\mathrm e}^{x}-{\mathrm e}^{-x}}{{\mathrm e}^{x}+{\mathrm e}^{-x}} \]

18023

\[ {}y^{\prime \prime }-2 y = 4 x^{2} {\mathrm e}^{x^{2}} \]

18024

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \sin \left (2 x \right ) \]

18025

\[ {}y^{\prime \prime }+9 y = \ln \left (2 \sin \left (\frac {x}{2}\right )\right ) \]

18251

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 4 x \]

18253

\[ {}y^{\prime \prime }-2 y^{\prime } = 6 \]

18254

\[ {}y^{\prime \prime }-2 y = \sin \left (x \right ) \]

18255

\[ {}y^{\prime \prime } = {\mathrm e}^{x} \]

18256

\[ {}y^{\prime \prime }-2 y^{\prime } = 4 \]

18257

\[ {}y^{\prime \prime }-y = \sin \left (x \right ) \]

18259

\[ {}y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x} \]

18323

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

18324

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

18325

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

18326

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

18327

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

18328

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

18329

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

18330

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

18331

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

18332

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

18333

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

18334

\[ {}y^{\prime \prime }+k^{2} y = \sin \left (b x \right ) \]

18335

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

18336

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

18337

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]

18338

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

18339

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

18340

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

18341

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

18342

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

18343

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

18344

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

18345

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

18346

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

18347

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

18348

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

18349

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

18350

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

18351

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

18380

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \]

18381

\[ {}y^{\prime \prime }-y = x^{2} {\mathrm e}^{2 x} \]

18382

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 10 x^{3} {\mathrm e}^{-2 x} \]

18383

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

18384

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \]

18385

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \,{\mathrm e}^{5 x} \]

18386

\[ {}y^{\prime \prime }-y^{\prime }+y = x^{3}-3 x^{2}+1 \]

18388

\[ {}4 y^{\prime \prime }+y = x^{4} \]

18391

\[ {}y^{\prime \prime }+y^{\prime }-y = -x^{4}+3 x \]

18392

\[ {}y^{\prime \prime }+y = x^{4} \]

18395

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} {\mathrm e}^{2 x} \]

18396

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = {\mathrm e}^{2 x} \left (x^{3}-5 x^{2}\right ) \]

18397

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \]

18406

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \sin \left (x \right ) {\mathrm e}^{2 x} \]