5.27.19 Problems 1801 to 1896

Table 5.1203: Second order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

18454

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \]

18455

\[ {}y^{\prime \prime }+y^{\prime } = 3 x^{2} \]

18456

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (x \right ) {\mathrm e}^{-x} \]

18461

\[ {}y^{\prime \prime }+a^{2} y = f \left (x \right ) \]

18462

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 t} \]

18463

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]

18464

\[ {}y^{\prime \prime }-y^{\prime } = t^{2} \]

18465

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = f \left (t \right ) \]

18525

\[ {}x^{\prime \prime }-x = t^{2} \]

18526

\[ {}x^{\prime \prime }-x = {\mathrm e}^{t} \]

18527

\[ {}x^{\prime \prime }+2 x^{\prime }+4 x = {\mathrm e}^{t} \cos \left (2 t \right ) \]

18528

\[ {}x^{\prime \prime }-x^{\prime }+x = \sin \left (2 t \right ) \]

18529

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = t \sin \left (t \right ) \]

18530

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]

18585

\[ {}v^{\prime \prime }-6 v^{\prime }+13 v = {\mathrm e}^{-2 u} \]

18586

\[ {}y^{\prime \prime }+4 y^{\prime }-y = \sin \left (t \right ) \]

18587

\[ {}y^{\prime \prime }+3 y = \sin \left (x \right )+\frac {\sin \left (3 x \right )}{3} \]

18607

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

18664

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

18666

\[ {}y^{\prime \prime }-4 y^{\prime }+2 y = x \]

18667

\[ {}y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

18670

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

18671

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \]

18672

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

18674

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

18678

\[ {}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2} \]

18679

\[ {}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \]

18680

\[ {}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \]

18681

\[ {}e y^{\prime \prime } = -P \left (L -x \right ) \]

18682

\[ {}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \]

18698

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

18706

\[ {}x = y^{\prime \prime }+y^{\prime } \]

18876

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

18877

\[ {}y^{\prime \prime }-y = 2+5 x \]

18878

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x} \]

18882

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{\frac {5 x}{2}} \]

18886

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

18887

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

18890

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) {\mathrm e}^{2 x} \]

18891

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right ) \]

18892

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

18893

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

18897

\[ {}y^{\prime \prime }+4 y = \sin \left (3 x \right )+{\mathrm e}^{x}+x^{2} \]

18898

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x +{\mathrm e}^{m x} \]

18899

\[ {}y^{\prime \prime }-a^{2} y = {\mathrm e}^{a x}+{\mathrm e}^{n x} \]

18905

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

18906

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

18907

\[ {}y^{\prime \prime }+n^{2} y = {\mathrm e}^{x} x^{4} \]

18911

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (2 x \right ) \]

18913

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

18917

\[ {}y^{\prime \prime }-y = x \sin \left (x \right )+\left (x^{2}+1\right ) {\mathrm e}^{x} \]

18918

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = {\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right ) \]

18920

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 20 x \]

18956

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

18993

\[ {}y^{\prime \prime } = \frac {a}{x} \]

18996

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

19173

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

19174

\[ {}y^{\prime \prime }-y = 2+5 x \]

19175

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 15 x^{2} \]

19176

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

19177

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{\frac {5 x}{2}} \]

19178

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-x} \]

19179

\[ {}y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y = {\mathrm e}^{k x} \]

19180

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right )+\cos \left (2 x \right ) \]

19181

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right )+\cos \left (b x \right ) \]

19182

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+\sin \left (2 x \right ) \]

19184

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

19185

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \]

19191

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = \sin \left (x \right ) {\mathrm e}^{2 x} \]

19192

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

19193

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \cos \left (x \right ) \]

19196

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \left (x -1\right ) {\mathrm e}^{2 x} \]

19197

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x \cos \left (x \right ) \]

19200

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

19201

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

19202

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x}+\cos \left (x \right )+x^{3}+{\mathrm e}^{x} \sin \left (x \right ) \]

19206

\[ {}y^{\prime \prime }+y = 3 \cos \left (x \right )^{2}+2 \sin \left (x \right )^{3} \]

19209

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y+37 \sin \left (3 x \right ) = 0 \]

19366

\[ {}y^{\prime \prime } = x +\sin \left (x \right ) \]

19367

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

19370

\[ {}y^{\prime \prime } = \frac {a}{x} \]

19382

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

19473

\[ {}y^{\prime \prime }+y = x \]

19474

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

19475

\[ {}y^{\prime \prime }+4 y = 4 \tan \left (2 x \right ) \]

19477

\[ {}y^{\prime \prime }-y = \frac {2}{1+{\mathrm e}^{x}} \]

19533

\[ {}y^{\prime \prime }+n^{2} y = \sec \left (n x \right ) \]

19535

\[ {}y^{\prime \prime }-4 y^{\prime }+y = a \cos \left (2 x \right ) \]

19538

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \sin \left (x \right ) \]

19540

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

19541

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \sinh \left (2 x \right ) \]

19542

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

19543

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \sin \left (x \right ) \]

19603

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

19604

\[ {}y^{\prime \prime } = \sec \left (x \right )^{2} \]

19634

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]