4.69 Problems 6801 to 6900

Table 4.137: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

6801

\[ {}x^{4} {y^{\prime }}^{2}+2 y^{\prime } y x^{3}-4 = 0 \]

6802

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]

6803

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

6804

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

6805

\[ {}y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]

6806

\[ {}x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0 \]

6807

\[ {}y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \]

6808

\[ {}x {y^{\prime }}^{4}-2 y {y^{\prime }}^{3}+12 x^{3} = 0 \]

6809

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

6810

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

6811

\[ {}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

6812

\[ {}2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \]

6813

\[ {}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

6814

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

6815

\[ {}{y^{\prime }}^{3}-x y^{\prime }+2 y = 0 \]

6816

\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

6817

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

6818

\[ {}5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

6819

\[ {}{y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

6820

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} x^{3} \]

6821

\[ {}y^{\prime \prime } = x {y^{\prime }}^{3} \]

6822

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

6823

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime } = 0 \]

6824

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6825

\[ {}y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6826

\[ {}\left (y+1\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

6827

\[ {}2 a y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6828

\[ {}x y^{\prime \prime } = y^{\prime }+x^{5} \]

6829

\[ {}x y^{\prime \prime }+y^{\prime }+x = 0 \]

6830

\[ {}y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

6831

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3}-{y^{\prime }}^{2} = 0 \]

6832

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

6833

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

6834

\[ {}\cos \left (x \right ) y^{\prime \prime } = y^{\prime } \]

6835

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

6836

\[ {}y^{\prime \prime } = x {y^{\prime }}^{2} \]

6837

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

6838

\[ {}y^{\prime \prime } = -{\mathrm e}^{-2 y} \]

6839

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

6840

\[ {}2 y^{\prime \prime } = \sin \left (2 y\right ) \]

6841

\[ {}x^{3} y^{\prime \prime }-x^{2} y^{\prime } = -x^{2}+3 \]

6842

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

6843

\[ {}y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

6844

\[ {}2 y^{\prime \prime } = {y^{\prime }}^{3} \sin \left (2 x \right ) \]

6845

\[ {}x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

6846

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

6847

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{\frac {3}{2}} \]

6848

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-y^{\prime } \sin \left (y\right )-y y^{\prime } \cos \left (y\right )\right ) \]

6849

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

6850

\[ {}\left (y y^{\prime \prime }+1+{y^{\prime }}^{2}\right )^{2} = \left (1+{y^{\prime }}^{2}\right )^{3} \]

6851

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (2 x -y^{\prime }\right ) \]

6852

\[ {}x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

6853

\[ {}x y^{\prime \prime } = y^{\prime } \left (2-3 x y^{\prime }\right ) \]

6854

\[ {}x^{4} y^{\prime \prime } = y^{\prime } \left (y^{\prime }+x^{3}\right ) \]

6855

\[ {}y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2} \]

6856

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0 \]

6857

\[ {}{y^{\prime \prime }}^{2}-x y^{\prime \prime }+y^{\prime } = 0 \]

6858

\[ {}{y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]

6859

\[ {}3 y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}-1 \]

6860

\[ {}4 y {y^{\prime }}^{2} y^{\prime \prime } = {y^{\prime }}^{4}+3 \]

6861

\[ {}y^{\prime \prime }+y = -\cos \left (x \right ) \]

6862

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \]

6863

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 12 x^{2} \]

6864

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2}+2 x +1 \]

6865

\[ {}{y^{\prime }}^{2} x^{3}+x^{2} y y^{\prime }+4 = 0 \]

6866

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

6867

\[ {}9 {y^{\prime }}^{2}+3 y^{4} y^{\prime } x +y^{5} = 0 \]

6868

\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

6869

\[ {}x^{6} {y^{\prime }}^{2}-2 x y^{\prime }-4 y = 0 \]

6870

\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

6871

\[ {}y^{2} {y^{\prime }}^{2}-y \left (1+x \right ) y^{\prime }+x = 0 \]

6872

\[ {}4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

6873

\[ {}4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

6874

\[ {}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

6875

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

6876

\[ {}16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]

6877

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

6878

\[ {}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \]

6879

\[ {}9 y^{4} {y^{\prime }}^{2} x -3 y^{5} y^{\prime }-1 = 0 \]

6880

\[ {}x^{2} {y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+y^{2}+1 = 0 \]

6881

\[ {}x^{6} {y^{\prime }}^{2} = 16 y+8 x y^{\prime } \]

6882

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

6883

\[ {}\left (1+y^{\prime }\right )^{2} \left (y-x y^{\prime }\right ) = 1 \]

6884

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

6885

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

6886

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

6887

\[ {}x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

6888

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

6889

\[ {}y^{\prime \prime }+y = 0 \]

6890

\[ {}y^{\prime \prime }-9 y = 0 \]

6891

\[ {}y^{\prime \prime }+3 x y^{\prime }+3 y = 0 \]

6892

\[ {}\left (4 x^{2}+1\right ) y^{\prime \prime }-8 y = 0 \]

6893

\[ {}\left (-4 x^{2}+1\right ) y^{\prime \prime }+8 y = 0 \]

6894

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

6895

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+10 x y^{\prime }+20 y = 0 \]

6896

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

6897

\[ {}\left (x^{2}-9\right ) y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

6898

\[ {}y^{\prime \prime }+2 x y^{\prime }+5 y = 0 \]

6899

\[ {}\left (x^{2}+4\right ) y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

6900

\[ {}\left (2 x^{2}+1\right ) y^{\prime \prime }-5 x y^{\prime }+3 y = 0 \]