3.7.15 Problems 1401 to 1500

Table 3.481: Solved using series method

#

ODE

Mathematica

Maple

13943

\[ {}y^{\prime \prime }-y^{2} = 0 \]

13944

\[ {}y^{\prime }+\cos \left (y\right ) = 0 \]

13945

\[ {}y^{\prime }-{\mathrm e}^{x} y = 0 \]

13946

\[ {}y^{\prime }-\tan \left (x \right ) y = 0 \]

13947

\[ {}\sin \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-{\mathrm e}^{x} y = 0 \]

13948

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-{\mathrm e}^{x} y = 0 \]

13949

\[ {}\sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \sin \left (x \right ) = 0 \]

13950

\[ {}{\mathrm e}^{3 x} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\frac {2 y}{x^{2}+4} = 0 \]

13951

\[ {}y^{\prime \prime }+\frac {\left (1+{\mathrm e}^{x}\right ) y}{-{\mathrm e}^{x}+1} = 0 \]

13952

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y = 0 \]

13953

\[ {}x y^{\prime \prime }+\left (-{\mathrm e}^{x}+1\right ) y = 0 \]

13954

\[ {}\sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \]

13955

\[ {}y^{\prime }-{\mathrm e}^{x} y = 0 \]

13956

\[ {}y^{\prime }+{\mathrm e}^{2 x} y = 0 \]

13957

\[ {}y^{\prime }+\cos \left (x \right ) y = 0 \]

13958

\[ {}y^{\prime }+y \ln \left (x \right ) = 0 \]

13959

\[ {}y^{\prime \prime }-{\mathrm e}^{x} y = 0 \]

13960

\[ {}y^{\prime \prime }+3 x y^{\prime }-{\mathrm e}^{x} y = 0 \]

13961

\[ {}x y^{\prime \prime }-3 x y^{\prime }+y \sin \left (x \right ) = 0 \]

13962

\[ {}y^{\prime \prime }+y \ln \left (x \right ) = 0 \]

13963

\[ {}\sqrt {x}\, y^{\prime \prime }+y = 0 \]

13964

\[ {}y^{\prime \prime }+\left (6 x^{2}+2 x +1\right ) y^{\prime }+\left (2+12 x \right ) y = 0 \]

13965

\[ {}y^{\prime }-{\mathrm e}^{x} y = 0 \]

13966

\[ {}y^{\prime }+\sqrt {x^{2}+1}\, y = 0 \]

13967

\[ {}\cos \left (x \right ) y^{\prime }+y = 0 \]

13968

\[ {}y^{\prime }+\sqrt {2 x^{2}+1}\, y = 0 \]

13969

\[ {}y^{\prime \prime }-{\mathrm e}^{x} y = 0 \]

13970

\[ {}y^{\prime \prime }+\cos \left (x \right ) y = 0 \]

13971

\[ {}y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\cos \left (x \right ) y = 0 \]

13972

\[ {}\sqrt {x}\, y^{\prime \prime }+y^{\prime }+x y = 0 \]

13973

\[ {}\left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y = 0 \]

13974

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

13975

\[ {}\left (-1+x \right )^{2} y^{\prime \prime }-5 \left (-1+x \right ) y^{\prime }+9 y = 0 \]

13976

\[ {}\left (2+x \right )^{2} y^{\prime \prime }+\left (2+x \right ) y^{\prime } = 0 \]

13977

\[ {}3 \left (-2+x \right )^{2} y^{\prime \prime }-4 \left (x -5\right ) y^{\prime }+2 y = 0 \]

13978

\[ {}\left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0 \]

13979

\[ {}x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{-2+x}+\frac {2 y}{2+x} = 0 \]

13980

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

13981

\[ {}\left (-x^{4}+x^{3}\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+827 y = 0 \]

13982

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x -3}+\frac {y}{x -4} = 0 \]

13983

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0 \]

13984

\[ {}y^{\prime \prime }+\left (\frac {1}{x}-\frac {1}{3}\right ) y^{\prime }+\left (\frac {1}{x}-\frac {1}{4}\right ) y = 0 \]

13985

\[ {}\left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1} = 0 \]

13986

\[ {}\left (x^{2}+4\right )^{2} y^{\prime \prime }+y = 0 \]

13987

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

13988

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

13989

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \]

13990

\[ {}\left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 x y^{\prime }+10 y = 0 \]

13991

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\frac {y}{1-x} = 0 \]

13992

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

13993

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y = 0 \]

13994

\[ {}2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

13995

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

13996

\[ {}\left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y = 0 \]

13997

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

13998

\[ {}4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0 \]

13999

\[ {}x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y = 0 \]

14000

\[ {}\left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y = 0 \]

14001

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

14002

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{2+x}+y = 0 \]

14003

\[ {}4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (-1+x \right )^{2}} = 0 \]

14004

\[ {}\left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y = 0 \]

14005

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

14006

\[ {}x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

14007

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

14008

\[ {}x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

14009

\[ {}x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y = 0 \]

14010

\[ {}x^{2} \left (2 x +1\right ) y^{\prime \prime }+x y^{\prime }+\left (4 x^{3}-4\right ) y = 0 \]

14011

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+\left (1-4 x \right ) y = 0 \]

14012

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (2 x +1\right ) y = 0 \]

14013

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (2+x \right )^{2}} = 0 \]

14014

\[ {}x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (2+x \right )^{2}} = 0 \]

14015

\[ {}\left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

14016

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+3 y = 0 \]

14017

\[ {}4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

14018

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

14019

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

14020

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \]

14777

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+7 y = 0 \]

14778

\[ {}\left (-2+x \right ) y^{\prime \prime }+y^{\prime }-y = 0 \]

14779

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+16 \left (2+x \right ) y^{\prime }-y = 0 \]

14780

\[ {}y^{\prime \prime }+3 y^{\prime }-18 y = 0 \]

14781

\[ {}y^{\prime \prime }-11 y^{\prime }+30 y = 0 \]

14782

\[ {}y^{\prime \prime }+y = 0 \]

14783

\[ {}y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{-x} \]

14784

\[ {}\left (-2-2 x \right ) y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

14785

\[ {}\left (2+3 x \right ) y^{\prime \prime }+3 x y^{\prime } = 0 \]

14786

\[ {}\left (3 x +1\right ) y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

14787

\[ {}\left (-x^{2}+2\right ) y^{\prime \prime }+2 \left (-1+x \right ) y^{\prime }+4 y = 0 \]

14788

\[ {}y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

14789

\[ {}\left (2 x^{2}+2\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

14790

\[ {}\left (3-2 x \right ) y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

14791

\[ {}y^{\prime \prime }-4 x^{2} y = 0 \]

14792

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

14793

\[ {}y^{\prime \prime }+x y^{\prime } = \sin \left (x \right ) \]

14794

\[ {}y^{\prime \prime }+y^{\prime }+x y = \cos \left (x \right ) \]

14795

\[ {}y^{\prime \prime }+\left (y^{2}-1\right ) y^{\prime }+y = 0 \]

14796

\[ {}y^{\prime \prime }+\left (\frac {{y^{\prime }}^{2}}{3}-1\right ) y^{\prime }+y = 0 \]

14797

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

14798

\[ {}y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]