3.7.16 Problems 1501 to 1555

Table 3.483: Solved using series method

#

ODE

Mathematica

Maple

14799

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

14800

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+9 y = 0 \]

14801

\[ {}y^{\prime \prime }-\cos \left (x \right ) y = \sin \left (x \right ) \]

14802

\[ {}x^{2} y^{\prime \prime }+6 y = 0 \]

14803

\[ {}x \left (1+x \right ) y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}+5 y = 0 \]

14804

\[ {}\left (x^{2}-3 x -4\right ) y^{\prime \prime }-\left (1+x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

14805

\[ {}\left (x^{2}-25\right )^{2} y^{\prime \prime }-\left (5+x \right ) y^{\prime }+10 y = 0 \]

14806

\[ {}2 x y^{\prime \prime }-5 y^{\prime }-3 y = 0 \]

14807

\[ {}5 x y^{\prime \prime }+8 y^{\prime }-x y = 0 \]

14808

\[ {}9 x y^{\prime \prime }+14 y^{\prime }+\left (-1+x \right ) y = 0 \]

14809

\[ {}7 x y^{\prime \prime }+10 y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

14810

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-1+x \right ) y = 0 \]

14811

\[ {}x y^{\prime \prime }+2 x y^{\prime }+y = 0 \]

14812

\[ {}y^{\prime \prime }+\frac {8 y^{\prime }}{3 x}-\left (\frac {2}{3 x^{2}}-1\right ) y = 0 \]

14813

\[ {}y^{\prime \prime }+\left (\frac {16}{3 x}-1\right ) y^{\prime }-\frac {16 y}{3 x^{2}} = 0 \]

14814

\[ {}y^{\prime \prime }+\left (\frac {1}{2 x}-2\right ) y^{\prime }-\frac {35 y}{16 x^{2}} = 0 \]

14815

\[ {}y^{\prime \prime }-\left (\frac {1}{x}+2\right ) y^{\prime }+\left (x +\frac {1}{x^{2}}\right ) y = 0 \]

14816

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }-7 y = 0 \]

14817

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

14818

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

14819

\[ {}y^{\prime \prime }+x y = 0 \]

14820

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-k^{2}+x^{2}\right ) y = 0 \]

14821

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+k \left (k +1\right ) y = 0 \]

14822

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0 \]

14823

\[ {}x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+2 y = 0 \]

14824

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }+2 y = 0 \]

14825

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0 \]

14826

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

14827

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (16 x^{2}-25\right ) y = 0 \]

14884

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

14885

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = x \,{\mathrm e}^{x} \]

14886

\[ {}\left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

14887

\[ {}3 x y^{\prime \prime }+11 y^{\prime }-y = 0 \]

14888

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

14889

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+\left (-2 x^{2}+7\right ) y = 0 \]

14890

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y = 0 \]

14891

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (-2 x +1\right ) y^{\prime }-10 y = 0 \]

15468

\[ {}y^{\prime } = 1-x y \]

15469

\[ {}y^{\prime } = \frac {y-x}{x +y} \]

15470

\[ {}y^{\prime } = y \sin \left (x \right ) \]

15471

\[ {}y^{\prime \prime }+x y = 0 \]

15472

\[ {}y^{\prime \prime }-y^{\prime } \sin \left (x \right ) = 0 \]

15473

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = x \]

15474

\[ {}\ln \left (x \right ) y^{\prime \prime }-y \sin \left (x \right ) = 0 \]

15475

\[ {}y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]

15476

\[ {}y^{\prime }-2 x y = 0 \]

15477

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

15478

\[ {}y^{\prime \prime }-x y^{\prime }+y = 1 \]

15479

\[ {}y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

15480

\[ {}y^{\prime \prime } = x^{2} y-y^{\prime } \]

15481

\[ {}y^{\prime \prime }-{\mathrm e}^{x} y = 0 \]

15482

\[ {}y^{\prime } = {\mathrm e}^{y}+x y \]

15483

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15484

\[ {}\left (1+x \right ) y^{\prime }-n y = 0 \]

15485

\[ {}9 x \left (1-x \right ) y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]