3.1.35 Problems 3401 to 3500

Table 3.69: First order ode




#

ODE

Mathematica

Maple





6502

\[ {}L i^{\prime }+R i = E_{0} \operatorname {Heaviside}\left (t \right ) \]





6503

\[ {}L i^{\prime }+R i = E_{0} \delta \left (t \right ) \]





6504

\[ {}L i^{\prime }+R i = E_{0} \sin \left (\omega t \right ) \]





6545

\[ {}y^{\prime } = y^{2}-x \]





6547

\[ {}y^{\prime }-2 y = x^{2} \]





6549

\[ {}y^{\prime } = y+x \,{\mathrm e}^{y} \]





6656

\[ {}y^{\prime }-y = 1 \]





6657

\[ {}2 y^{\prime }+y = 0 \]





6658

\[ {}y^{\prime }+6 y = {\mathrm e}^{4 t} \]





6659

\[ {}y^{\prime }-y = 2 \cos \left (5 t \right ) \]





6666

\[ {}y^{\prime }+y = {\mathrm e}^{-3 t} \cos \left (2 t \right ) \]





6668

\[ {}y^{\prime }+4 y = {\mathrm e}^{-4 t} \]





6669

\[ {}y^{\prime }-y = 1+t \,{\mathrm e}^{t} \]





6680

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 5 & 1\le t \end {array}\right . \]





6681

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le t <1 \\ -1 & 1\le t \end {array}\right . \]





6682

\[ {}y^{\prime }+y = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]





6688

\[ {}y^{\prime }+y = t \sin \left (t \right ) \]





6689

\[ {}y^{\prime }-y = t \,{\mathrm e}^{t} \sin \left (t \right ) \]





6697

\[ {}y^{\prime }-3 y = \delta \left (t -2\right ) \]





6698

\[ {}y^{\prime }+y = \delta \left (-1+t \right ) \]





6767

\[ {}x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]





6768

\[ {}x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]





6769

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]





6770

\[ {}x^{2} {y^{\prime }}^{2}+x y^{\prime }-y^{2}-y = 0 \]





6771

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]





6772

\[ {}{y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]





6773

\[ {}x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]





6774

\[ {}{y^{\prime }}^{2}-y^{2} x^{2} = 0 \]





6775

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]





6776

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]





6777

\[ {}{y^{\prime }}^{2}-x y \left (x +y\right ) y^{\prime }+y^{3} x^{3} = 0 \]





6778

\[ {}\left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]





6779

\[ {}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]





6780

\[ {}x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y = 0 \]





6781

\[ {}\left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 y^{2} x^{2} \]





6782

\[ {}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0 \]





6783

\[ {}x y \left (x^{2}+y^{2}\right ) \left ({y^{\prime }}^{2}-1\right ) = y^{\prime } \left (x^{4}+y^{2} x^{2}+y^{4}\right ) \]





6784

\[ {}x {y^{\prime }}^{3}-\left (x^{2}+x +y\right ) {y^{\prime }}^{2}+\left (x^{2}+x y+y\right ) y^{\prime }-x y = 0 \]





6785

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]





6786

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]





6787

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]





6788

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]





6789

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]





6790

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]





6791

\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]





6792

\[ {}4 y^{3} {y^{\prime }}^{2}+4 x y^{\prime }+y = 0 \]





6793

\[ {}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]





6794

\[ {}y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]





6795

\[ {}{y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y = 0 \]





6796

\[ {}{y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]





6797

\[ {}2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]





6798

\[ {}{y^{\prime }}^{2}-x y^{\prime }+y = 0 \]





6799

\[ {}y = x y^{\prime }+k {y^{\prime }}^{2} \]





6800

\[ {}x^{8} {y^{\prime }}^{2}+3 x y^{\prime }+9 y = 0 \]





6801

\[ {}x^{4} {y^{\prime }}^{2}+2 y^{\prime } y x^{3}-4 = 0 \]





6802

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }+4 x = 0 \]





6803

\[ {}3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]





6804

\[ {}x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]





6805

\[ {}y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]





6806

\[ {}x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0 \]





6807

\[ {}y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \]





6808

\[ {}x {y^{\prime }}^{4}-2 y {y^{\prime }}^{3}+12 x^{3} = 0 \]





6809

\[ {}x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]





6810

\[ {}{y^{\prime }}^{2}-x y^{\prime }-y = 0 \]





6811

\[ {}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]





6812

\[ {}2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \]





6813

\[ {}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]





6814

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]





6815

\[ {}{y^{\prime }}^{3}-x y^{\prime }+2 y = 0 \]





6816

\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]





6817

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]





6818

\[ {}5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]





6819

\[ {}{y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]





6820

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} x^{3} \]





6865

\[ {}{y^{\prime }}^{2} x^{3}+x^{2} y y^{\prime }+4 = 0 \]





6866

\[ {}6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]





6867

\[ {}9 {y^{\prime }}^{2}+3 y^{4} y^{\prime } x +y^{5} = 0 \]





6868

\[ {}4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]





6869

\[ {}x^{6} {y^{\prime }}^{2}-2 x y^{\prime }-4 y = 0 \]





6870

\[ {}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]





6871

\[ {}y^{2} {y^{\prime }}^{2}-y \left (1+x \right ) y^{\prime }+x = 0 \]





6872

\[ {}4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]





6873

\[ {}4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]





6874

\[ {}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]





6875

\[ {}x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]





6876

\[ {}16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]





6877

\[ {}x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]





6878

\[ {}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \]





6879

\[ {}9 y^{4} {y^{\prime }}^{2} x -3 y^{5} y^{\prime }-1 = 0 \]





6880

\[ {}x^{2} {y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+y^{2}+1 = 0 \]





6881

\[ {}x^{6} {y^{\prime }}^{2} = 16 y+8 x y^{\prime } \]





6882

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]





6883

\[ {}\left (1+y^{\prime }\right )^{2} \left (y-x y^{\prime }\right ) = 1 \]





6884

\[ {}{y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]





6885

\[ {}x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]





6886

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]





6887

\[ {}x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]





6888

\[ {}x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]





7029

\[ {}y^{\prime } = \frac {y}{x \ln \left (x \right )} \]





7030

\[ {}\left (x^{2}+1\right ) y^{\prime }+y^{2} = -1 \]