6.92 Problems 9101 to 9200

Table 6.183: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

9101

\[ {} y y^{\prime } x = y-1 \]

9102

\[ {} x y^{2}-x^{2} y^{\prime } = 0 \]

9103

\[ {} y y^{\prime } = 1+x \]

9104

\[ {} x^{2} y^{\prime } = y \]

9105

\[ {} \frac {y^{\prime }}{x^{2}+1} = \frac {x}{y} \]

9106

\[ {} y^{2} y^{\prime } = x +2 \]

9107

\[ {} y^{\prime } = x^{2} y^{2} \]

9108

\[ {} \left (1+y\right ) y^{\prime } = -x^{2}+1 \]

9109

\[ {} \frac {y^{\prime \prime }}{y^{\prime }} = x^{2} \]

9110

\[ {} y^{\prime } y^{\prime \prime } = x \left (1+x \right ) \]

9111

\[ {} y^{\prime }-x y = 0 \]

9112

\[ {} y^{\prime }+x y = x \]

9113

\[ {} y^{\prime }+y = \frac {1}{{\mathrm e}^{2 x}+1} \]

9114

\[ {} y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

9115

\[ {} 2 y-x^{3} = x y^{\prime } \]

9116

\[ {} y^{\prime }+2 x y = 0 \]

9117

\[ {} x y^{\prime }-3 y = x^{4} \]

9118

\[ {} \left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \left (x \right ) \]

9119

\[ {} y^{\prime }+y \cot \left (x \right ) = 2 x \csc \left (x \right ) \]

9120

\[ {} y-x +x y \cot \left (x \right )+x y^{\prime } = 0 \]

9121

\[ {} y^{\prime }-x y = 0 \]

9122

\[ {} y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}} \]

9123

\[ {} x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \]

9124

\[ {} y^{\prime }-\frac {y}{x} = x^{2} \]

9125

\[ {} y^{\prime }+4 y = {\mathrm e}^{-x} \]

9126

\[ {} x y+x^{2} y^{\prime } = 2 x \]

9127

\[ {} x y^{\prime }+y = y^{3} x^{4} \]

9128

\[ {} x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

9129

\[ {} x y^{\prime }+y = x y^{2} \]

9130

\[ {} y^{\prime }+x y = x y^{4} \]

9131

\[ {} \left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2} \]

9132

\[ {} y-x y^{\prime } = y^{\prime } y^{2} {\mathrm e}^{y} \]

9133

\[ {} x y^{\prime }+2 = x^{3} \left (y-1\right ) y^{\prime } \]

9134

\[ {} x y^{\prime } = 2 x^{2} y+y \ln \left (x \right ) \]

9135

\[ {} y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

9136

\[ {} \left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

9137

\[ {} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

9138

\[ {} y-x^{3}+\left (y^{3}+x \right ) y^{\prime } = 0 \]

9139

\[ {} 2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \]

9140

\[ {} y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

9141

\[ {} \cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

9142

\[ {} \left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

9143

\[ {} -\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

9144

\[ {} 1+y+\left (1-x \right ) y^{\prime } = 0 \]

9145

\[ {} 2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

9146

\[ {} \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} = 1 \]

9147

\[ {} 2 x y^{4}+\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

9148

\[ {} \frac {x y^{\prime }+y}{1-x^{2} y^{2}}+x = 0 \]

9149

\[ {} 2 x \left (1+\sqrt {-y+x^{2}}\right ) = \sqrt {-y+x^{2}}\, y^{\prime } \]

9150

\[ {} x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

9151

\[ {} {\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

9152

\[ {} 1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

9153

\[ {} \frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

9154

\[ {} 3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

9155

\[ {} \frac {y-x y^{\prime }}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

9156

\[ {} \frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

9157

\[ {} x^{2}-2 y^{2}+y y^{\prime } x = 0 \]

9158

\[ {} x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

9159

\[ {} x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \]

9160

\[ {} x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

9161

\[ {} x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

9162

\[ {} x -y-\left (x +y\right ) y^{\prime } = 0 \]

9163

\[ {} x y^{\prime } = 2 x -6 y \]

9164

\[ {} x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

9165

\[ {} x^{2} y^{\prime } = 2 x y+y^{2} \]

9166

\[ {} x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

9167

\[ {} y^{\prime } = \frac {x +y+4}{x -y-6} \]

9168

\[ {} y^{\prime } = \frac {x +y+4}{x +y-6} \]

9169

\[ {} 2 x -2 y+\left (y-1\right ) y^{\prime } = 0 \]

9170

\[ {} y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

9171

\[ {} 2 x +3 y-1-4 y^{\prime } \left (1+x \right ) = 0 \]

9172

\[ {} y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

9173

\[ {} y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

9174

\[ {} y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

9175

\[ {} y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right ) \]

9176

\[ {} {\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0 \]

9177

\[ {} y^{\prime } = \frac {x^{2}-x y}{y^{2} \cos \left (\frac {x}{y}\right )} \]

9178

\[ {} y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x} \]

9179

\[ {} \left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

9180

\[ {} x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

9181

\[ {} x y^{\prime }+y+3 x^{3} y^{4} y^{\prime } = 0 \]

9182

\[ {} {\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 \csc \left (y\right ) y\right ) y^{\prime } = 0 \]

9183

\[ {} \left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

9184

\[ {} y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

9185

\[ {} x +3 y^{2}+2 y y^{\prime } x = 0 \]

9186

\[ {} y+\left (2 x -{\mathrm e}^{y} y\right ) y^{\prime } = 0 \]

9187

\[ {} y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

9188

\[ {} y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

9189

\[ {} x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

9190

\[ {} y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \]

9191

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

9192

\[ {} x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

9193

\[ {} y^{\prime \prime }-k^{2} y = 0 \]

9194

\[ {} x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \]

9195

\[ {} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

9196

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

9197

\[ {} x y^{\prime \prime }+y^{\prime } = 4 x \]

9198

\[ {} \left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

9199

\[ {} y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]

9200

\[ {} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime } \]