6.93 Problems 9201 to 9300

Table 6.185: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

9201

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

9202

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

9203

\[ {} x y^{\prime }+y = x \]

9204

\[ {} x^{2} y^{\prime }+y = x^{2} \]

9205

\[ {} x^{2} y^{\prime } = y \]

9206

\[ {} \sec \left (x \right ) y^{\prime } = \sec \left (y\right ) \]

9207

\[ {} y^{\prime } = \frac {x^{2}+y^{2}}{x^{2}-y^{2}} \]

9208

\[ {} y^{\prime } = \frac {2 y+x}{2 x -y} \]

9209

\[ {} 2 x y+x^{2} y^{\prime } = 0 \]

9210

\[ {} -\sin \left (x \right ) \sin \left (y\right )+\cos \left (x \right ) \cos \left (y\right ) y^{\prime } = 0 \]

9211

\[ {} x y^{\prime }-y = 2 x \]

9212

\[ {} x^{2} y^{\prime }-2 y = 3 x^{2} \]

9213

\[ {} y^{2} y^{\prime } = x \]

9214

\[ {} \csc \left (x \right ) y^{\prime } = \csc \left (y\right ) \]

9215

\[ {} y^{\prime } = \frac {x +y}{x -y} \]

9216

\[ {} y^{\prime } = \frac {x^{2}+2 y^{2}}{x^{2}-2 y^{2}} \]

9217

\[ {} 2 x \cos \left (y\right )-x^{2} \sin \left (y\right ) y^{\prime } = 0 \]

9218

\[ {} \frac {1}{y}-\frac {x y^{\prime }}{y^{2}} = 0 \]

9219

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

9220

\[ {} x y^{\prime \prime } = y^{\prime }-2 {y^{\prime }}^{3} \]

9221

\[ {} y y^{\prime \prime }+y^{\prime } = 0 \]

9222

\[ {} x y^{\prime \prime }-3 y^{\prime } = 5 x \]

9223

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

9224

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

9225

\[ {} y^{\prime \prime }+8 y = 0 \]

9226

\[ {} 2 y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

9227

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

9228

\[ {} 20 y-9 y^{\prime }+y^{\prime \prime } = 0 \]

9229

\[ {} 2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

9230

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

9231

\[ {} y^{\prime \prime }+y = 0 \]

9232

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

9233

\[ {} 4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

9234

\[ {} 3 y+2 y^{\prime }+y^{\prime \prime } = 0 \]

9235

\[ {} y^{\prime \prime } = 4 y \]

9236

\[ {} 4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

9237

\[ {} 2 y^{\prime \prime }+y^{\prime }-y = 0 \]

9238

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]

9239

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]

9240

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

9241

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = 0 \]

9242

\[ {} y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

9243

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

9244

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]

9245

\[ {} y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

9246

\[ {} y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

9247

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

9248

\[ {} 2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

9249

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

9250

\[ {} 4 x^{2} y^{\prime \prime }-3 y = 0 \]

9251

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

9252

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

9253

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

9254

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

9255

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

9256

\[ {} y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

9257

\[ {} 4 y+y^{\prime \prime } = 3 \sin \left (x \right ) \]

9258

\[ {} y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

9259

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

9260

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

9261

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

9262

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

9263

\[ {} y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

9264

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 6 \,{\mathrm e}^{x} \]

9265

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

9266

\[ {} y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

9267

\[ {} 4 y+y^{\prime \prime } = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

9268

\[ {} y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

9269

\[ {} y^{\prime \prime }-3 y = {\mathrm e}^{2 x} \]

9270

\[ {} y^{\prime }+y^{\prime \prime \prime } = \sin \left (x \right ) \]

9271

\[ {} 4 y+y^{\prime \prime } = \tan \left (2 x \right ) \]

9272

\[ {} y+2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x} \ln \left (x \right ) \]

9273

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

9274

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

9275

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

9276

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = \frac {1}{1+{\mathrm e}^{-x}} \]

9277

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

9278

\[ {} y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

9279

\[ {} y^{\prime \prime }+y = \cot \left (2 x \right ) \]

9280

\[ {} y^{\prime \prime }+y = x \cos \left (x \right ) \]

9281

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \]

9282

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right ) \]

9283

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

9284

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 2 x \]

9285

\[ {} y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

9286

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]

9287

\[ {} \left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (1+x \right )^{2} \]

9288

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (1-x \right )^{2} \]

9289

\[ {} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = x^{2} {\mathrm e}^{2 x} \]

9290

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

9291

\[ {} y^{\prime \prime }+y = 0 \]

9292

\[ {} -y+y^{\prime \prime } = 0 \]

9293

\[ {} x y^{\prime \prime }+3 y^{\prime } = 0 \]

9294

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

9295

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

9296

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

9297

\[ {} y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

9298

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

9299

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

9300

\[ {} y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]