6.146 Problems 14501 to 14600

Table 6.291: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

14501

\[ {} [x^{\prime }\left (t \right ) = -6 y \left (t \right ), y^{\prime }\left (t \right ) = 6 y \left (t \right )] \]

14502

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-14] \]

14503

\[ {} [x^{\prime }\left (t \right ) = 3 y \left (t \right )-3 x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )-1] \]

14504

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )] \]

14505

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

14506

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

14507

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )-3 x \left (t \right )] \]

14508

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

14509

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

14510

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )] \]

14511

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

14512

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )] \]

14513

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )] \]

14514

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )+3 y \left (t \right )] \]

14515

\[ {} [x^{\prime }\left (t \right ) = -5 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-10 y \left (t \right )] \]

14516

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )] \]

14517

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

14518

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

14519

\[ {} [x^{\prime }\left (t \right ) = 9 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

14520

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

14521

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+4 y \left (t \right )] \]

14522

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )+1, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+2] \]

14523

\[ {} [x^{\prime }\left (t \right ) = -5 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = 2 x \left (t \right )-10 y \left (t \right )] \]

14524

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\cos \left (w t \right )] \]

14525

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )+3, y^{\prime }\left (t \right ) = 7 x \left (t \right )+5 y \left (t \right )+2 t] \]

14526

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+7 y \left (t \right )] \]

14527

\[ {} y^{\prime }+y = 1+x \]

14528

\[ {} 12 y-7 y^{\prime }+y^{\prime \prime } = 0 \]

14529

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = 4 x^{2} \]

14530

\[ {} 2 y+4 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

14531

\[ {} x^{2}+y^{2}+2 y y^{\prime } x = 0 \]

14532

\[ {} x y^{\prime }+y = x^{3} y^{3} \]

14533

\[ {} y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

14534

\[ {} y^{\prime }+4 x y = 8 x \]

14535

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

14536

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

14537

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

14538

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-10 x y^{\prime }-8 y = 0 \]

14539

\[ {} 2 y+y^{\prime } = 6 \,{\mathrm e}^{x}+4 x \,{\mathrm e}^{-2 x} \]

14540

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = -8 \sin \left (2 x \right ) \]

14541

\[ {} {y^{\prime }}^{2}-4 y = 0 \]

14542

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

14543

\[ {} y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

14544

\[ {} y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

14545

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

14546

\[ {} y^{\prime \prime }+y = 0 \]

14547

\[ {} y^{\prime \prime }+y = 0 \]

14548

\[ {} y^{\prime \prime }+y = 0 \]

14549

\[ {} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

14550

\[ {} y^{\prime } = x^{2} \sin \left (y\right ) \]

14551

\[ {} y^{\prime } = \frac {y^{2}}{x -2} \]

14552

\[ {} y^{\prime } = y^{{1}/{3}} \]

14553

\[ {} 3 x +2 y+\left (y+2 x \right ) y^{\prime } = 0 \]

14554

\[ {} y^{2}+3+\left (2 x y-4\right ) y^{\prime } = 0 \]

14555

\[ {} 2 x y+1+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]

14556

\[ {} 3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime } = 0 \]

14557

\[ {} 6 x y+2 y^{2}-5+\left (3 x^{2}+4 x y-6\right ) y^{\prime } = 0 \]

14558

\[ {} y \sec \left (x \right )^{2}+\tan \left (x \right ) \sec \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime } = 0 \]

14559

\[ {} \frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime } = 0 \]

14560

\[ {} \frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

14561

\[ {} \frac {2 y^{{3}/{2}}+1}{\sqrt {x}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime } = 0 \]

14562

\[ {} 2 x y-3+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]

14563

\[ {} 3 x^{2} y^{2}-y^{3}+2 x +\left (2 x^{3} y-3 x y^{2}+1\right ) y^{\prime } = 0 \]

14564

\[ {} 2 \sin \left (x \right ) \cos \left (x \right ) y+\sin \left (x \right ) y^{2}+\left (\sin \left (x \right )^{2}-2 y \cos \left (x \right )\right ) y^{\prime } = 0 \]

14565

\[ {} y \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}+y^{2}+\left ({\mathrm e}^{x}+2 x y\right ) y^{\prime } = 0 \]

14566

\[ {} \frac {3-y}{x^{2}}+\frac {\left (y^{2}-2 x \right ) y^{\prime }}{x y^{2}} = 0 \]

14567

\[ {} \frac {1+8 x y^{{2}/{3}}}{x^{{2}/{3}} y^{{1}/{3}}}+\frac {\left (2 x^{{4}/{3}} y^{{2}/{3}}-x^{{1}/{3}}\right ) y^{\prime }}{y^{{4}/{3}}} = 0 \]

14568

\[ {} 4 x +3 y^{2}+2 y y^{\prime } x = 0 \]

14569

\[ {} y^{2}+2 x y-x^{2} y^{\prime } = 0 \]

14570

\[ {} y+x \left (x^{2}+y^{2}\right )^{2}+\left (y \left (x^{2}+y^{2}\right )^{2}-x \right ) y^{\prime } = 0 \]

14571

\[ {} \left (x^{2}+1\right ) y^{\prime }+4 x y = 0 \]

14572

\[ {} x y+2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

14573

\[ {} 2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \]

14574

\[ {} \csc \left (y\right )+\sec \left (x \right ) y^{\prime } = 0 \]

14575

\[ {} \tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \]

14576

\[ {} \left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0 \]

14577

\[ {} \left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \]

14578

\[ {} x +y-x y^{\prime } = 0 \]

14579

\[ {} 2 x y+3 y^{2}-\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

14580

\[ {} v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0 \]

14581

\[ {} x \tan \left (\frac {y}{x}\right )+y-x y^{\prime } = 0 \]

14582

\[ {} \left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

14583

\[ {} x^{3}+y^{2} \sqrt {x^{2}+y^{2}}-x y \sqrt {x^{2}+y^{2}}\, y^{\prime } = 0 \]

14584

\[ {} \sqrt {x +y}+\sqrt {x -y}+\left (\sqrt {x -y}-\sqrt {x +y}\right ) y^{\prime } = 0 \]

14585

\[ {} y+2+y \left (x +4\right ) y^{\prime } = 0 \]

14586

\[ {} 8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime } = 0 \]

14587

\[ {} \left (3 x +8\right ) \left (4+y^{2}\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \]

14588

\[ {} x^{2}+3 y^{2}-2 y y^{\prime } x = 0 \]

14589

\[ {} \left (4 x -y\right ) y^{\prime }+2 x -5 y = 0 \]

14590

\[ {} 3 x^{2}+9 x y+5 y^{2}-\left (6 x^{2}+4 x y\right ) y^{\prime } = 0 \]

14591

\[ {} x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

14592

\[ {} 3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

14593

\[ {} x^{2}+2 y^{2}+\left (4 x y-y^{2}\right ) y^{\prime } = 0 \]

14594

\[ {} 2 x^{2}+2 x y+y^{2}+\left (x^{2}+2 x y\right ) y^{\prime } = 0 \]

14595

\[ {} y^{\prime }+\frac {3 y}{x} = 6 x^{2} \]

14596

\[ {} x^{4} y^{\prime }+2 x^{3} y = 1 \]

14597

\[ {} y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

14598

\[ {} y^{\prime }+4 x y = 8 x \]

14599

\[ {} x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

14600

\[ {} \left (u^{2}+1\right ) v^{\prime }+4 u v = 3 u \]