6.153 Problems 15201 to 15300

Table 6.305: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

15201

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

15202

\[ {} y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

15203

\[ {} x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

15204

\[ {} y+2 y^{\prime }+y^{\prime \prime } = \sinh \left (x \right ) \]

15205

\[ {} y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

15206

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

15207

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

15208

\[ {} m x^{\prime \prime } = f \left (x\right ) \]

15209

\[ {} m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

15210

\[ {} y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

15211

\[ {} x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

15212

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (1+x \right )+y = 2 \cos \left (\ln \left (1+x \right )\right ) \]

15213

\[ {} x^{3} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15214

\[ {} x^{\prime \prime \prime \prime }+x = t^{3} \]

15215

\[ {} {y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

15216

\[ {} x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

15217

\[ {} -y y^{\prime }-x {y^{\prime }}^{2}+x y y^{\prime \prime } = 0 \]

15218

\[ {} y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

15219

\[ {} y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

15220

\[ {} 6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

15221

\[ {} x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

15222

\[ {} y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

15223

\[ {} y^{\prime \prime } = 2 y^{3} \]

15224

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

15225

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

15226

\[ {} [x^{\prime }\left (t \right )+5 x \left (t \right )+y \left (t \right ) = {\mathrm e}^{t}, y^{\prime }\left (t \right )-x \left (t \right )-3 y \left (t \right ) = {\mathrm e}^{2 t}] \]

15227

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )] \]

15228

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )^{2}}{x \left (t \right )}\right ] \]

15229

\[ {} y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

15230

\[ {} x^{2} y^{\prime } = 1+y^{2} \]

15231

\[ {} y^{\prime } = \sin \left (x y\right ) \]

15232

\[ {} x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \]

15233

\[ {} y^{\prime } = \cos \left (x +y\right ) \]

15234

\[ {} x y^{\prime }+y = x y^{2} \]

15235

\[ {} y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \]

15236

\[ {} y^{\prime } = x \,{\mathrm e}^{-x +y^{2}} \]

15237

\[ {} y^{\prime } = \ln \left (x y\right ) \]

15238

\[ {} x \left (1+y\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

15239

\[ {} y^{\prime \prime }+x^{2} y = 0 \]

15240

\[ {} y^{\prime \prime \prime }+x y = \sin \left (x \right ) \]

15241

\[ {} y y^{\prime }+y^{\prime \prime } = 1 \]

15242

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

15243

\[ {} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

15244

\[ {} y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

15245

\[ {} \cos \left (x \right ) y^{\prime }+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

15246

\[ {} y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

15247

\[ {} y y^{\prime } = 1 \]

15248

\[ {} \sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

15249

\[ {} 5 y^{\prime }-x y = 0 \]

15250

\[ {} {y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

15251

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

15252

\[ {} y^{\prime \prime \prime } = 1 \]

15253

\[ {} x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

15254

\[ {} y^{\prime \prime } = y+x^{2} \]

15255

\[ {} y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

15256

\[ {} {y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

15257

\[ {} \sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

15258

\[ {} \sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

15259

\[ {} y y^{\prime \prime } = 1 \]

15260

\[ {} {y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

15261

\[ {} y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15262

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

15263

\[ {} 2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

15264

\[ {} 3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

15265

\[ {} \left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]

15266

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cot \left (x \right ) = 0 \]

15267

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

15268

\[ {} x y^{\prime \prime }+2 x^{2} y^{\prime }+\sin \left (x \right ) y = \sinh \left (x \right ) \]

15269

\[ {} \sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+7 y = 1 \]

15270

\[ {} y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]

15271

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

15272

\[ {} x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

15273

\[ {} y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

15274

\[ {} y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

15275

\[ {} x y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = 0 \]

15276

\[ {} y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

15277

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x \]

15278

\[ {} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

15279

\[ {} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

15280

\[ {} y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

15281

\[ {} \ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]

15282

\[ {} x y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 0 \]

15283

\[ {} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = \cos \left (x \right ) \]

15284

\[ {} -\csc \left (x \right )^{2} y+\cot \left (x \right ) y^{\prime }+y^{\prime \prime } = \cos \left (x \right ) \]

15285

\[ {} x \ln \left (x \right ) y^{\prime \prime }+2 y^{\prime }-\frac {y}{x} = 1 \]

15286

\[ {} x y^{\prime \prime }+\left (6 x y^{2}+1\right ) y^{\prime }+2 y^{3}+1 = 0 \]

15287

\[ {} \frac {x y^{\prime \prime }}{1+y}+\frac {y y^{\prime }-x {y^{\prime }}^{2}+y^{\prime }}{\left (1+y\right )^{2}} = x \sin \left (x \right ) \]

15288

\[ {} \left (x \cos \left (y\right )+\sin \left (x \right )\right ) y^{\prime \prime }-x {y^{\prime }}^{2} \sin \left (y\right )+2 \left (\cos \left (y\right )+\cos \left (x \right )\right ) y^{\prime } = \sin \left (x \right ) y \]

15289

\[ {} y y^{\prime \prime } \sin \left (x \right )+\left (y^{\prime } \sin \left (x \right )+y \cos \left (x \right )\right ) y^{\prime } = \cos \left (x \right ) \]

15290

\[ {} \left (1-y\right ) y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

15291

\[ {} \left (\cos \left (y\right )-y \sin \left (y\right )\right ) y^{\prime \prime }-{y^{\prime }}^{2} \left (2 \sin \left (y\right )+y \cos \left (y\right )\right ) = \sin \left (x \right ) \]

15292

\[ {} y^{\prime \prime }+\frac {2 x y^{\prime }}{2 x -1}-\frac {4 x y}{\left (2 x -1\right )^{2}} = 0 \]

15293

\[ {} \left (x^{2}+2 x \right ) y^{\prime \prime }+\left (x^{2}+x +10\right ) y^{\prime } = \left (25-6 x \right ) y \]

15294

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{1+x}-\frac {\left (x +2\right ) y}{x^{2} \left (1+x \right )} = 0 \]

15295

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 0 \]

15296

\[ {} \frac {\left (x^{2}-x \right ) y^{\prime \prime }}{x}+\frac {\left (3 x +1\right ) y^{\prime }}{x}+\frac {y}{x} = 3 x \]

15297

\[ {} \left (2 \sin \left (x \right )-\cos \left (x \right )\right ) y^{\prime \prime }+\left (7 \sin \left (x \right )+4 \cos \left (x \right )\right ) y^{\prime }+10 y \cos \left (x \right ) = 0 \]

15298

\[ {} y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x}+\frac {y}{x^{3}} = \frac {{\mathrm e}^{-\frac {1}{x}}}{x^{3}} \]

15299

\[ {} y^{\prime \prime }+\left (2 x +5\right ) y^{\prime }+\left (4 x +8\right ) y = {\mathrm e}^{-2 x} \]

15300

\[ {} y^{\prime \prime }+9 y = 0 \]