6.198 Problems 19701 to 19800

Table 6.395: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

19701

\[ {} y+x y^{\prime }+y^{\prime \prime } = 0 \]

19702

\[ {} y^{\prime \prime }+y^{\prime }-x y = 0 \]

19703

\[ {} y^{\prime \prime }+x y = 0 \]

19704

\[ {} n^{2} y-x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

19705

\[ {} 2 n y-2 x y^{\prime }+y^{\prime \prime } = 0 \]

19706

\[ {} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

19707

\[ {} x^{2} \left (x^{2}-1\right )^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

19708

\[ {} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

19709

\[ {} \left (3 x +1\right ) x y^{\prime \prime }-y^{\prime } \left (1+x \right )+2 y = 0 \]

19710

\[ {} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

19711

\[ {} x y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

19712

\[ {} x^{2} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

19713

\[ {} x^{3} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

19714

\[ {} x^{4} y^{\prime \prime }+\sin \left (x \right ) y = 0 \]

19715

\[ {} x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 x y = 0 \]

19716

\[ {} 4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

19717

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

19718

\[ {} 2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

19719

\[ {} 2 x y^{\prime \prime }+y^{\prime } \left (1+x \right )+3 y = 0 \]

19720

\[ {} 2 x^{2} y^{\prime \prime }+x y^{\prime }-\left (1+x \right ) y = 0 \]

19721

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

19722

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

19723

\[ {} y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}} = 0 \]

19724

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (4+4 x \right ) y = 0 \]

19725

\[ {} 4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

19726

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

19727

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

19728

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

19729

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y \left (x^{2}-1\right ) = 0 \]

19730

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

19731

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

19732

\[ {} \left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (5 x +1\right ) y^{\prime }+y = 0 \]

19733

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

19734

\[ {} \left (x^{2}-x -6\right ) y^{\prime \prime }+\left (5+3 x \right ) y^{\prime }+y = 0 \]

19735

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (1-3 x \right ) y^{\prime }-y = 0 \]

19736

\[ {} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

19737

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0 \]

19738

\[ {} y^{\prime }+y = 3 \,{\mathrm e}^{2 x} \]

19739

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

19740

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 2 \]

19741

\[ {} y^{\prime \prime }+y^{\prime } = 3 x^{2} \]

19742

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = 3 \,{\mathrm e}^{-x} \sin \left (x \right ) \]

19743

\[ {} y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

19744

\[ {} x y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-\left (9+4 x \right ) y = 0 \]

19745

\[ {} x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y = 3 \,{\mathrm e}^{-x} \]

19746

\[ {} y^{\prime \prime }+x^{2} y = 0 \]

19747

\[ {} y^{\prime \prime }+a^{2} y = f \left (x \right ) \]

19748

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 t} \]

19749

\[ {} y^{\prime \prime }+y^{\prime }-6 y = t \]

19750

\[ {} y^{\prime \prime }-y^{\prime } = t^{2} \]

19751

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = f \left (t \right ) \]

19752

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

19753

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )] \]

19754

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+t -1, y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )-5 t -2] \]

19755

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

19756

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

19757

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

19758

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right )] \]

19759

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

19760

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \]

19761

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )] \]

19762

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

19763

\[ {} [x^{\prime }\left (t \right ) = 7 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right )] \]

19764

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+5 y \left (t \right )] \]

19765

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-5 t +2, y^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )-8 t -8] \]

19766

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )] \]

19767

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right )] \]

19768

\[ {} [x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

19769

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -17 x \left (t \right )-5 y \left (t \right )] \]

19770

\[ {} [x^{\prime }\left (t \right ) = -4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

19771

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \]

19772

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right )] \]

19773

\[ {} x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5} = 0 \]

19774

\[ {} x^{\prime } = 3 t^{2}+4 t \]

19775

\[ {} x^{\prime } = b \,{\mathrm e}^{t} \]

19776

\[ {} x^{\prime } = \frac {1}{t^{2}+1} \]

19777

\[ {} x^{\prime } = \frac {1}{\sqrt {t^{2}+1}} \]

19778

\[ {} x^{\prime } = \cos \left (t \right ) \]

19779

\[ {} x^{\prime } = \frac {\cos \left (t \right )}{\sin \left (t \right )} \]

19780

\[ {} x^{\prime } = x^{2}-3 x+2 \]

19781

\[ {} x^{\prime } = b \,{\mathrm e}^{x} \]

19782

\[ {} x^{\prime } = \left (x-1\right )^{2} \]

19783

\[ {} x^{\prime } = \sqrt {x^{2}-1} \]

19784

\[ {} x^{\prime } = 2 \sqrt {x} \]

19785

\[ {} x^{\prime } = \tan \left (x\right ) \]

19786

\[ {} 3 x t^{2}-t x+\left (3 t^{3} x^{2}+t^{3} x^{4}\right ) x^{\prime } = 0 \]

19787

\[ {} 1+2 x+\left (-t^{2}+4\right ) x^{\prime } = 0 \]

19788

\[ {} x^{\prime } = \cos \left (\frac {x}{t}\right ) \]

19789

\[ {} \left (t^{2}-x^{2}\right ) x^{\prime } = t x \]

19790

\[ {} x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t} = 2 t \]

19791

\[ {} 2 t +3 x+\left (3 t -x\right ) x^{\prime } = t^{2} \]

19792

\[ {} x^{\prime }+2 x = {\mathrm e}^{t} \]

19793

\[ {} x^{\prime }+x \tan \left (t \right ) = 0 \]

19794

\[ {} x^{\prime }-x \tan \left (t \right ) = 4 \sin \left (t \right ) \]

19795

\[ {} t^{3} x^{\prime }+\left (-3 t^{2}+2\right ) x = t^{3} \]

19796

\[ {} x^{\prime }+2 t x+t x^{4} = 0 \]

19797

\[ {} t x^{\prime }+x \ln \left (t \right ) = t^{2} \]

19798

\[ {} t x^{\prime }+x g \left (t \right ) = h \left (t \right ) \]

19799

\[ {} t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0 \]

19800

\[ {} x^{\prime } = -\lambda x \]