| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{\prime \prime \prime }-3 x^{\prime }+k x = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime \prime \prime }-6 x^{\prime \prime }+5 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }-x^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }-4 x^{\prime \prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }-8 x^{\prime \prime \prime }+23 x^{\prime \prime }-28 x^{\prime }+12 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }+2 x^{\prime \prime }-4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\left (5\right )}-x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\left (5\right )}+x^{\prime \prime \prime \prime }-x^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\left (5\right )}+x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\left (6\right )}-x^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\left (6\right )}-64 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }+3 x^{\prime \prime \prime }+2 x^{\prime \prime } = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }+4 x^{\prime } = \sec \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-x^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-x^{\prime } = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }+x^{\prime \prime \prime } = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }-3 x^{\prime \prime \prime }+2 x^{\prime }-5 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{3} x^{\prime \prime \prime }+4 t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = -3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = a x \left (t \right ), y^{\prime }\left (t \right ) = a y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = a x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = a y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+t, y^{\prime }\left (t \right ) = -y \left (t \right )+2 t]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = -x \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )-{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+2 t, y^{\prime }\left (t \right ) = 3 y \left (t \right )+t^{2}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )+2 t, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+t^{2}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )-{\mathrm e}^{t}]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), z^{\prime }\left (t \right ) = -2 x \left (t \right )+2 z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+3 z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right ), z^{\prime }\left (t \right ) = 4 z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-2 x^{\prime \prime }+3 x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = y \left (t \right )-z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )-z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = \left (a -2\right ) x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\left (a -2\right ) y \left (t \right ), z^{\prime }\left (t \right ) = -a z \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+t y \left (t \right ) = -1, x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 2]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )+y \left (t \right ) = 3 t, y^{\prime }\left (t \right )-t x^{\prime }\left (t \right ) = 0]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right )-t y \left (t \right ) = 1, y^{\prime }\left (t \right )-t x^{\prime }\left (t \right ) = 3]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [t^{2} x^{\prime }\left (t \right )-y \left (t \right ) = 1, y^{\prime }\left (t \right )-2 x \left (t \right ) = 0]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right )-y \left (t \right ) = 3, y^{\prime }\left (t \right )-3 x^{\prime }\left (t \right ) = -2 x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [t x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = 1, y^{\prime }\left (t \right )+x \left (t \right )+{\mathrm e}^{x^{\prime }\left (t \right )} = 1]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x \left (t \right ) x^{\prime }\left (t \right )+y \left (t \right ) = 2 t, y^{\prime }\left (t \right )+2 x \left (t \right )^{2} = 1]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 1+x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )-1]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )+a, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+b]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = a x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+b y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 c x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} L x^{\prime \prime }+g \sin \left (x\right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+x \left (t \right ) y \left (t \right )]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-7 x \left (t \right ) y \left (t \right )-a x \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+4 x \left (t \right ) y \left (t \right )-a y \left (t \right )]
\]
|
✗ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-2 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+x \left (t \right ) y \left (t \right )]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right )-4 x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = -2 y \left (t \right )+x \left (t \right ) y \left (t \right )]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right ) = x \left (t \right ) \left (3-y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (x \left (t \right )-5\right )]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x-x^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x^{3}-x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x^{3}-x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x^{3}-x
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x-x^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x-x^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = x-x^{3}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+x+8 x^{7} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }+x+\frac {x^{2}}{3} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-x+3 x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-x+3 x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-x+3 x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-x+3 x^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} t x^{\prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t x^{\prime \prime } = x^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t x^{\prime \prime } = t x+1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+t x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 t^{2} x^{\prime \prime }+4 t x^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} x^{\prime \prime }+3 t x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} x^{\prime \prime }-3 t x^{\prime }+\left (4-t \right ) x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+x t^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+x t^{2} = 0
\]
|
✗ |
✗ |
✓ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-1\right ) x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+\left (-m^{2}+t^{2}\right ) x = 0
\]
|
✓ |
✗ |
✓ |
|
| \[
{} s y^{\prime \prime }+\lambda y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+x t^{2} = \lambda x
\]
|
✓ |
✗ |
✓ |
|
| \[
{} x^{\prime }+x = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+x = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-2 x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-4 x^{\prime }+3 x = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }+x^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|