| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x^{\prime } = \frac {t x}{t^{2}+x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {3 x^{2}-2 t^{2}}{t x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {t^{2}+x^{2}}{2 t x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {x-t +1}{x-t +2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {x-t}{x-t +1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = -\frac {x+t +1}{x-t +1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }-x = t x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+2 t x = -4 t x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }-t x = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {x^{\prime }}^{2} = x^{2}+t^{2}-1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {x^{\prime }}^{2} = 4-4 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {x^{\prime }}^{2}-t x+x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x = t x^{\prime }-{x^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x = t x^{\prime }-{\mathrm e}^{x^{\prime }}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x = t x^{\prime }-\ln \left (x^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x = t x^{\prime }+\frac {1}{x^{\prime }}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x = t \left (1+x^{\prime }\right )+x^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} [x^{\prime }\left (t \right ) = a y \left (t \right ), y^{\prime }\left (t \right ) = -a x \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+\frac {x^{\prime }}{t}+q \left (t \right ) x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 x^{\prime \prime }+x^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime }+2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+8 x^{\prime }+16 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime }-15 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-3 x^{\prime }+2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x^{\prime }+2 x^{\prime \prime } = -5 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-6 x^{\prime }+9 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }-\beta x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+k x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+b x^{\prime }+c x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+5 x^{\prime }+6 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+p x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }-2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-2 x^{\prime }+2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-2 a x^{\prime }+b x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+\lambda ^{2} x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x^{\prime }-2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-2 x^{\prime }+5 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-2 x^{\prime }+5 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime } = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-4 x = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-4 x = 4 t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = t^{2}-2 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = 3 t^{2}+t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-x = {\mathrm e}^{-3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-x = 3 \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-x = t \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-3 x^{\prime }-x = t^{2}+t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-4 x^{\prime }+13 x = 20 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-x^{\prime }-2 x = 2 t +{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = \sin \left (2 t \right )-\cos \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x^{\prime }+2 x = \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = t \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-x^{\prime } = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-x = {\mathrm e}^{k t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-x^{\prime }-2 x = 3 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-3 x^{\prime }+2 x = 3 t \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-4 x^{\prime }+3 x = 2 \,{\mathrm e}^{t}-5 \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x = \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+x = 2 \sin \left (t \right )+2 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+9 x = \sin \left (t \right )+\sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-x = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+4 x^{\prime }+x = k
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-2 x = 2 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+\frac {\left (t^{5}+1\right ) x}{t^{4}+5} = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+\sqrt {t^{6}+3 t^{5}+1}\, x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+2 t^{3} x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-p \left (t \right ) x = q \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime \prime }+x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-\frac {t x^{\prime }}{4}+x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-\frac {x^{\prime }}{t} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-2 x^{\prime } \left (x-1\right ) = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = 2 {x^{\prime }}^{3} x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x x^{\prime \prime }-2 {x^{\prime }}^{2}-x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x x^{\prime \prime }-{x^{\prime }}^{2}+{\mathrm e}^{t} x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x x^{\prime \prime }-{x^{\prime }}^{2}+{\mathrm e}^{t} x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} t^{2} x^{\prime \prime }-2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} x^{\prime \prime }+a t x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} x^{\prime \prime }-t x^{\prime }-3 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} x^{\prime \prime }+t x^{\prime }+x = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} x^{\prime \prime }+3 t x^{\prime }-3 x = t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-t x^{\prime }+3 x = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x^{\prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }+5 x^{\prime \prime }-6 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-4 x^{\prime \prime }+x^{\prime }-4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-3 x^{\prime \prime }+4 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }+4 x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }+x^{\prime \prime }-2 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x = 0
\]
|
✗ |
✓ |
✗ |
|