| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime } = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime } = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = 3 \,{\mathrm e}^{-x}-4 x -6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = 7 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime } = 4
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = x^{2}+8
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 6 x \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+12 y^{\prime \prime }+48 y^{\prime }+64 y = 8 x \,{\mathrm e}^{-4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+9 y^{\prime \prime }+27 y^{\prime }+27 y = 15 x^{2} {\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-12 y^{\prime \prime }+48 y^{\prime }-64 y = 15 x^{2} {\mathrm e}^{4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 16 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 2 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+6 y^{\prime \prime }+9 y^{\prime } = {\mathrm e}^{-3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }-8 y^{\prime \prime } = 48 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 36 \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime } = 4 x^{3}+2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 12 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 12 x -2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime } = 12 x -2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-y = x^{10}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 16 x^{3}+20 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = x^{6}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = \sec \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime } = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = {\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{t}+{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 4 t \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime } = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = {\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{t}+{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|