4.23.8 Problems 701 to 749

Table 4.1351: Higher order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

24648

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime } = 12 \]

24649

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 12 \]

24650

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime } = 12 \]

24669

\[ {} y^{\prime \prime \prime }-y = x \]

24670

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (x \right ) \]

24671

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = 3 \,{\mathrm e}^{-x}-4 x -6 \]

24672

\[ {} y^{\prime \prime \prime \prime }-y = 7 x^{2} \]

24673

\[ {} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{-x} \]

24690

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 4 \]

24723

\[ {} y^{\prime \prime \prime }-y = {\mathrm e}^{2 x} \]

24724

\[ {} y^{\prime \prime \prime }-y = x^{2}+8 \]

24725

\[ {} y^{\prime \prime \prime }-y = {\mathrm e}^{-x} \]

24726

\[ {} y^{\prime \prime \prime \prime }+4 y = \cos \left (x \right ) \]

24727

\[ {} y^{\prime \prime \prime \prime }+4 y = \sin \left (x \right ) \]

24728

\[ {} y^{\prime \prime \prime \prime }+4 y = \sin \left (2 x \right ) \]

24733

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 6 x \,{\mathrm e}^{2 x} \]

24734

\[ {} y^{\prime \prime \prime }+12 y^{\prime \prime }+48 y^{\prime }+64 y = 8 x \,{\mathrm e}^{-4 x} \]

24735

\[ {} y^{\prime \prime \prime }+9 y^{\prime \prime }+27 y^{\prime }+27 y = 15 x^{2} {\mathrm e}^{-3 x} \]

24736

\[ {} y^{\prime \prime \prime }-12 y^{\prime \prime }+48 y^{\prime }-64 y = 15 x^{2} {\mathrm e}^{4 x} \]

24737

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 16 \,{\mathrm e}^{2 x} \]

24738

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{-3 x} \]

24749

\[ {} y^{\prime }+2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{-x} \]

24750

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 2 \,{\mathrm e}^{2 x} \]

24765

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x} \]

24766

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+9 y^{\prime } = {\mathrm e}^{-3 x} \]

24779

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }-8 y^{\prime \prime } = 48 \,{\mathrm e}^{2 x} \]

24780

\[ {} y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 36 \,{\mathrm e}^{3 x} \]

24797

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = 4 x^{3}+2 x \]

24798

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 12 x \]

24799

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 12 x -2 \]

24800

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime } = 12 x -2 \]

24803

\[ {} y^{\left (6\right )}-y = x^{10} \]

24804

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = 16 x^{3}+20 x^{2} \]

24808

\[ {} y^{\prime }+y^{\prime \prime \prime } = {\mathrm e}^{-x} \]

24822

\[ {} y^{\prime \prime \prime \prime }-y = x^{6} \]

24826

\[ {} y^{\prime }+y^{\prime \prime \prime } = \sin \left (x \right ) \]

24827

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sin \left (x \right ) \]

24875

\[ {} y^{\prime }+y^{\prime \prime \prime } = \sec \left (x \right )^{2} \]

25259

\[ {} y^{\prime \prime \prime }-3 y^{\prime } = {\mathrm e}^{t} \]

25273

\[ {} y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{t} \]

25274

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \cos \left (t \right ) \]

25275

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = {\mathrm e}^{2 t} \]

25276

\[ {} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{t}+{\mathrm e}^{-t} \]

25277

\[ {} y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{t} \]

25278

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 4 t \,{\mathrm e}^{2 t} \]

25279

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = t \]

25280

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = {\mathrm e}^{2 t} \]

25281

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 4 \cos \left (t \right ) \]

25282

\[ {} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{t}+{\mathrm e}^{-t} \]