4.23.7 Problems 601 to 700

Table 4.1349: Higher order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

22595

\[ {} y^{\prime \prime \prime } = 3 \sin \left (x \right ) \]

22596

\[ {} 2 y^{\prime \prime \prime \prime } = {\mathrm e}^{x}-{\mathrm e}^{-x} \]

22608

\[ {} y^{\prime \prime \prime \prime } = \ln \left (x \right ) \]

22609

\[ {} y^{\left (5\right )}+2 y^{\prime \prime \prime \prime } = x \]

22716

\[ {} y^{\prime \prime \prime \prime } = 2 y^{\prime \prime \prime }+24 x \]

22730

\[ {} 3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x} \]

22735

\[ {} y^{\prime }+y^{\prime \prime \prime } = \sin \left (2 x \right ) \]

22741

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = 3 \,{\mathrm e}^{x}-2 \]

22807

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right ) \]

22819

\[ {} y^{\prime }+y^{\prime \prime \prime } = x +\sin \left (x \right )+\cos \left (x \right ) \]

22822

\[ {} y^{\prime \prime \prime \prime }-y = \cosh \left (x \right ) \]

22828

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 3 x^{2}-4 \,{\mathrm e}^{x} \]

22836

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+24 y = x^{2} {\mathrm e}^{3 x} \]

22840

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }-6 y^{\prime }-12 y = \sinh \left (x \right )^{4} \]

22852

\[ {} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{x} \]

22853

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{x}+{\mathrm e}^{-x} \]

22862

\[ {} y^{\prime \prime \prime }-y^{\prime } = x^{5}+1 \]

22864

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 2 \,{\mathrm e}^{3 x}-4 \,{\mathrm e}^{-5 x} \]

22895

\[ {} y^{\prime \prime \prime }-4 y = 4 x +2+3 \,{\mathrm e}^{-2 x} \]

22897

\[ {} x^{\prime \prime \prime \prime }-x = 8 \,{\mathrm e}^{-t} \]

22900

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 1 \]

22901

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 64 \cos \left (4 x \right ) \]

22904

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 12 \,{\mathrm e}^{2 x}+24 x^{2} \]

22907

\[ {} s^{\prime \prime \prime \prime }-2 s^{\prime \prime }+s = 100 \cos \left (3 t \right ) \]

22909

\[ {} y^{\left (5\right )}-5 y^{\prime \prime }+4 y^{\prime } = x^{2}-x +{\mathrm e}^{x} \]

22910

\[ {} i^{\prime \prime \prime \prime }+9 i^{\prime \prime } = 20 \,{\mathrm e}^{-t} \]

22912

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 64 \sin \left (2 x \right ) \]

22930

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-t} \]

22931

\[ {} y^{\prime \prime \prime \prime }-y = \cos \left (t \right ) \]

23348

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

23359

\[ {} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y = 2 x^{2}+3 \]

23367

\[ {} y^{\prime \prime \prime } = 2 \]

23376

\[ {} y^{\prime \prime \prime } = x^{3} \]

23380

\[ {} y^{\prime \prime \prime } = x^{2} \]

23575

\[ {} y^{\prime \prime \prime }+y^{\prime }-2 y = x^{3} \]

23579

\[ {} y^{\prime \prime \prime }-y = 3 \ln \left (x \right ) \]

23580

\[ {} y^{\prime \prime \prime \prime }-y = x^{2} \]

23596

\[ {} y^{\prime }+y^{\prime \prime \prime } = x \]

23597

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime } = 1 \]

23602

\[ {} y^{\prime }+y^{\prime \prime \prime } = x \]

23603

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime } = 1 \]

23605

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = {\mathrm e}^{-2 x} \]

23607

\[ {} y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{x} \]

23627

\[ {} y^{\prime }+y^{\prime \prime \prime } = x \]

23634

\[ {} e i u^{\prime \prime \prime \prime } = \cos \left (x \right ) \]

23635

\[ {} e i u^{\prime \prime \prime \prime } = {\mathrm e}^{-x} \]

23636

\[ {} e i u^{\prime \prime \prime \prime } = \sinh \left (x \right ) \]

23637

\[ {} e i u^{\prime \prime \prime \prime } = 1 \]

23638

\[ {} e i u^{\prime \prime \prime \prime } = x^{2} \]

23639

\[ {} e i u^{\prime \prime \prime \prime } = x^{4} \]

23761

\[ {} y^{\prime \prime \prime }-y = -1 \]

23762

\[ {} y^{\prime \prime \prime }+y = -1 \]

23772

\[ {} y^{\prime \prime \prime }-y = 12 \sinh \left (t \right ) \]

23777

\[ {} y^{\prime \prime \prime }+y = 18 \,{\mathrm e}^{2 t} \]

23778

\[ {} y^{\prime \prime \prime }+8 y = -12 \,{\mathrm e}^{-2 t} \]

24108

\[ {} y^{\prime \prime \prime }-y = 1 \]

24110

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime } = x^{3} \]

24112

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+2 y^{\prime }-y = x^{4}-2 x +1 \]

24113

\[ {} y^{\prime \prime \prime \prime }+y = \sin \left (x \right ) \]

24114

\[ {} y^{\prime \prime \prime }-3 y^{\prime } = {\mathrm e}^{x}+1 \]

24115

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x^{4} {\mathrm e}^{2 x} \]

24116

\[ {} y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = \cos \left (x \right ) \]

24117

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x -{\mathrm e}^{3 x} \]

24118

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (x \right ) \]

24119

\[ {} y^{\prime \prime \prime }-y = x^{n} \]

24124

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = f \left (x \right ) \]

24130

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 2 x \,{\mathrm e}^{3 x} \]

24131

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{x} \]

24133

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = {\mathrm e}^{x} \sin \left (x \right ) x \]

24134

\[ {} y^{\prime \prime \prime }+3 k y^{\prime \prime }+3 k^{2} y^{\prime }+k^{3} y = {\mathrm e}^{-k x} f^{\prime \prime \prime }\left (x \right ) \]

24136

\[ {} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 2+x +x \,{\mathrm e}^{-x}+x^{2} {\mathrm e}^{2 x} \]

24139

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = x^{2}-x \]

24140

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime } = {\mathrm e}^{-4 x} \]

24142

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sin \left (x \right ) \]

24143

\[ {} y^{\left (6\right )}+y^{\prime \prime \prime \prime }-y = 4 x^{5}-6 x^{2}+2 \]

24144

\[ {} y^{\left (8\right )}+y = x^{15} \]

24148

\[ {} y^{\left (8\right )}+8 y^{\left (7\right )}+28 y^{\left (6\right )}+56 y^{\left (5\right )}+70 y^{\prime \prime \prime \prime }+56 y^{\prime \prime \prime }+28 y^{\prime \prime }+8 y^{\prime } = {\mathrm e}^{-x} x^{9} \]

24150

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = {\mathrm e}^{2 x} \cos \left (3 x \right ) \]

24163

\[ {} y^{\prime \prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right ) \]

24164

\[ {} y^{\prime \prime \prime \prime }+16 y = x^{2}-4 \cos \left (3 x \right ) \]

24165

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 16 \,{\mathrm e}^{2 x} \]

24166

\[ {} y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+54 y^{\prime \prime }-108 y^{\prime }+81 y = x^{2} {\mathrm e}^{3 x} \]

24167

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime }+2 y = -2 x^{4}+x^{2} \]

24168

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = \cosh \left (2 x \right ) \]

24172

\[ {} y^{\left (5\right )} = 120 \]

24175

\[ {} y^{\prime \prime \prime }-y^{\prime } = x^{3}+{\mathrm e}^{-2 x} \]

24180

\[ {} y^{\left (10\right )}+y = x^{10} \]

24181

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{x}+{\mathrm e}^{2 x}+{\mathrm e}^{3 x} \]

24185

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y = x^{5}+2 x^{2} \]

24190

\[ {} y^{\left (6\right )}+y = x^{7}+2 x^{3} \]

24637

\[ {} y^{\prime \prime \prime }+y^{\prime }+2 y = 5 \]

24639

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 3 \]

24640

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+4 y = 14 \]

24641

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime } = 12 \]

24642

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime } = 12 \]

24643

\[ {} y^{\prime \prime \prime }-7 y^{\prime \prime }+14 y^{\prime }-8 y = 2 \]

24644

\[ {} y^{\prime \prime \prime }+9 y^{\prime } = 11 \]

24645

\[ {} y^{\prime \prime \prime }+9 y^{\prime \prime } = 11 \]

24646

\[ {} y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 11 \]

24647

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime } = 12 \]