| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime \prime \prime } = 3 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime \prime \prime } = {\mathrm e}^{x}-{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}+2 y^{\prime \prime \prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = 2 y^{\prime \prime \prime }+24 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+y = \sin \left (x \right )+{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }-5 y^{\prime }+6 y = 3 \,{\mathrm e}^{x}-2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{x}+\sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = x +\sin \left (x \right )+\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = \cosh \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 3 x^{2}-4 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+24 y = x^{2} {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime }-6 y^{\prime }-12 y = \sinh \left (x \right )^{4}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{x}+{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = x^{5}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 2 \,{\mathrm e}^{3 x}-4 \,{\mathrm e}^{-5 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y = 4 x +2+3 \,{\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }-x = 8 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 64 \cos \left (4 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 12 \,{\mathrm e}^{2 x}+24 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime \prime \prime \prime }-2 s^{\prime \prime }+s = 100 \cos \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-5 y^{\prime \prime }+4 y^{\prime } = x^{2}-x +{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime \prime \prime \prime }+9 i^{\prime \prime } = 20 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 64 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y = 2 x^{2}+3
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime } = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime }-2 y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = 3 \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y = {\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} e i u^{\prime \prime \prime \prime } = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} e i u^{\prime \prime \prime \prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} e i u^{\prime \prime \prime \prime } = \sinh \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} e i u^{\prime \prime \prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} e i u^{\prime \prime \prime \prime } = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} e i u^{\prime \prime \prime \prime } = x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = -1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+y = -1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-y = 12 \sinh \left (t \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }+y = 18 \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+8 y = -12 \,{\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime } = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+2 y^{\prime }-y = x^{4}-2 x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime } = {\mathrm e}^{x}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = x^{4} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x -{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-y = x^{n}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime } = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 2 x \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = {\mathrm e}^{x} \sin \left (x \right ) x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 k y^{\prime \prime }+3 k^{2} y^{\prime }+k^{3} y = {\mathrm e}^{-k x} f^{\prime \prime \prime }\left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 2+x +x \,{\mathrm e}^{-x}+x^{2} {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -4 y^{\prime }+y^{\prime \prime \prime } = x^{2}-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime } = {\mathrm e}^{-4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}+y^{\prime \prime \prime \prime }-y = 4 x^{5}-6 x^{2}+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (8\right )}+y = x^{15}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\left (8\right )}+8 y^{\left (7\right )}+28 y^{\left (6\right )}+56 y^{\left (5\right )}+70 y^{\prime \prime \prime \prime }+56 y^{\prime \prime \prime }+28 y^{\prime \prime }+8 y^{\prime } = {\mathrm e}^{-x} x^{9}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = {\mathrm e}^{2 x} \cos \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y = {\mathrm e}^{x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+16 y = x^{2}-4 \cos \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+4 y^{\prime \prime } = 16 \,{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-12 y^{\prime \prime \prime }+54 y^{\prime \prime }-108 y^{\prime }+81 y = x^{2} {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-y^{\prime }+2 y = -2 x^{4}+x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+4 y^{\prime \prime } = \cosh \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\left (5\right )} = 120
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = x^{3}+{\mathrm e}^{-2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (10\right )}+y = x^{10}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{x}+{\mathrm e}^{2 x}+{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }+y = x^{5}+2 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}+y = x^{7}+2 x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime }+2 y = 5
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-5 y^{\prime \prime }+4 y = 14
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime } = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+4 y^{\prime \prime } = 12
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-7 y^{\prime \prime }+14 y^{\prime }-8 y = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+9 y^{\prime } = 11
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+9 y^{\prime \prime } = 11
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 11
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime } = 12
\]
|
✓ |
✓ |
✓ |
|