| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y y^{\prime \prime \prime }+3 y^{\prime } y^{\prime \prime }-2 y y^{\prime \prime }-2 {y^{\prime }}^{2}+y y^{\prime } = {\mathrm e}^{2 x}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 \left (1+y\right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+y^{2}+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [x^{\prime }\left (t \right )-x \left (t \right )+y^{\prime }\left (t \right )+3 y \left (t \right ) = {\mathrm e}^{-t}-1, x^{\prime }\left (t \right )+2 x \left (t \right )+y^{\prime }\left (t \right )+3 y \left (t \right ) = 1+{\mathrm e}^{2 t}]
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = 1-x +2 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+x^{2} y = x^{2}+x +1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x y^{\prime \prime }+y^{\prime }-y = 1+x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} \left (1+x \right ) y^{\prime \prime \prime }-\left (4 x +2\right ) x^{2} y^{\prime \prime }+\left (4+10 x \right ) x y^{\prime }-\left (4+12 x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} \left (x^{2}+1\right ) y^{\prime \prime \prime }-\left (4 x^{2}+2\right ) x^{2} y^{\prime \prime }+\left (10 x^{2}+4\right ) x y^{\prime }-\left (12 x^{2}+4\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (3-x \right ) y-\left (4-x \right ) x y^{\prime }+2 \left (2-x \right ) x^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+4 \left (x +a \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }-\sin \left (x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {1}{4}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {9}{4}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+\frac {25}{4}\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }-2 y^{\prime }+y = \cos \left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime }-\frac {y}{x} = \cos \left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }-x y = \frac {1}{1-x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+\left (1+x \right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-x \right ) y^{\prime \prime }-4 x y^{\prime }+5 y = \cos \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} u^{\prime \prime }+u^{\prime }+u = \cos \left (r +u\right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sin \left (x^{\prime }\right )+y^{3} x = \sin \left (y \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-2 y^{\prime }+4 y = 4 x -1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = 2 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y^{2}-9}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {y^{2}-9}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+4 y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime }-3 y^{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x \sqrt {y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 6 \sqrt {y}+5 x^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 {y^{\prime }}^{3} y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x \left (y-4\right )^{2}-2
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sqrt {1-y^{2}}-y^{\prime } \sqrt {-x^{2}+1} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = y^{2}-y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = y^{2}-y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \left (y-1\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \sqrt {\frac {1-y^{2}}{-x^{2}+1}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -\frac {5+8 x}{3 y^{2}+1}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -\frac {5+8 x}{3 y^{2}+1}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -\frac {5+8 x}{3 y^{2}+1}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = -\frac {5+8 x}{3 y^{2}+1}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y-4 \left (x +y^{6}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y+y^{\prime } = \left \{\begin {array}{cc} 1 & 0\le x \le 3 \\ 0 & 3<x \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+y = \left \{\begin {array}{cc} 1 & 0\le x \le 1 \\ -1 & 1<x \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+2 x y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 0 & 1\le x \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+2 x y = \left \{\begin {array}{cc} x & 0\le x <1 \\ -x & 1\le x \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\left (\left \{\begin {array}{cc} 2 & 0\le x \le 1 \\ -\frac {2}{x} & 1<x \end {array}\right .\right ) y = 4 x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\left (\left \{\begin {array}{cc} 1 & 0\le x \le 2 \\ 5 & 2<x \end {array}\right .\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-4 y = x^{6} {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-4 y = x^{6} {\mathrm e}^{x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x -1\right ) y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+4 x^{2} y^{\prime }+3 y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} \left (x -5\right )^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}-25\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{4} y^{\prime \prime }+\lambda y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (2 x^{2}-64\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-5 y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime }-3 y = k
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-6\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-5 y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -1\right )^{2} y^{\prime \prime }-\left (x -1\right ) y^{\prime }-35 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 16 \left (1+x \right )^{2} y^{\prime \prime }+3 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-5\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\sin \left (x +y\right )^{2} = 0
\]
|
✓ |
✓ |
✗ |
|