5.3.20 Problems 1901 to 2000

Table 5.85: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

7476

\[ {} \frac {1}{x}+2 x y^{2}+\left (2 x^{2} y-\cos \left (y\right )\right ) y^{\prime } = 0 \]

7477

\[ {} y \,{\mathrm e}^{x y}-\frac {1}{y}+\left (x \,{\mathrm e}^{x y}+\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

7478

\[ {} {\mathrm e}^{t} y+t \,{\mathrm e}^{t} y+\left (t \,{\mathrm e}^{t}+2\right ) y^{\prime } = 0 \]

7480

\[ {} \sin \left (x \right ) y^{2}+\left (\frac {1}{x}-\frac {y}{x}\right ) y^{\prime } = 0 \]

7483

\[ {} 5 x^{2} y+6 y^{2} x^{3}+4 x y^{2}+\left (2 x^{3}+3 x^{4} y+3 x^{2} y\right ) y^{\prime } = 0 \]

7485

\[ {} 2 y^{3}+2 y^{2}+\left (3 x y^{2}+2 x y\right ) y^{\prime } = 0 \]

7490

\[ {} 2 x y+\left (y^{2}-3 x^{2}\right ) y^{\prime } = 0 \]

7495

\[ {} 2 x y^{3}+1+\left (3 x^{2} y^{2}-\frac {1}{y}\right ) y^{\prime } = 0 \]

7498

\[ {} 3+y+x y+\left (3+x +x y\right ) y^{\prime } = 0 \]

7499

\[ {} 2 x +2 y+2 x^{3} y+4 x^{2} y^{2}+\left (2 x +x^{4}+2 x^{3} y\right ) y^{\prime } = 0 \]

7512

\[ {} x^{\prime } = \frac {x^{2}+t \sqrt {t^{2}+x^{2}}}{t x} \]

7529

\[ {} -4 x -y-1+\left (x +y+3\right ) y^{\prime } = 0 \]

7530

\[ {} 2 x -y+\left (4 x +y-3\right ) y^{\prime } = 0 \]

7531

\[ {} 2 x -y+4+\left (x -2 y-2\right ) y^{\prime } = 0 \]

7532

\[ {} y^{\prime } = \frac {2 y}{x}+\cos \left (\frac {y}{x^{2}}\right ) \]

7534

\[ {} y^{\prime } = \frac {3 x y}{2 x^{2}-y^{2}} \]

7538

\[ {} \left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 x y-3 x^{2} = 0 \]

7541

\[ {} t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0 \]

7544

\[ {} 1+\frac {1}{1+x^{2}+4 x y+y^{2}}+\left (\frac {1}{\sqrt {y}}+\frac {1}{1+x^{2}+2 x y+y^{2}}\right ) y^{\prime } = 0 \]

7545

\[ {} x^{\prime } = 1+\cos \left (t -x\right )^{2} \]

7546

\[ {} y^{3}+4 y \,{\mathrm e}^{x}+\left (2 \,{\mathrm e}^{x}+3 y^{2}\right ) y^{\prime } = 0 \]

7558

\[ {} \sqrt {\frac {y}{x}}+\cos \left (x \right )+\left (\sqrt {\frac {x}{y}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

7559

\[ {} y \left (x -y-2\right )+x \left (y-x +4\right ) y^{\prime } = 0 \]

7563

\[ {} 4 x y^{3}-9 y^{2}+4 x y^{2}+\left (3 x^{2} y^{2}-6 x y+2 x^{2} y\right ) y^{\prime } = 0 \]

7570

\[ {} 2 \cos \left (y+2 x \right )-x^{2}+\left (\cos \left (y+2 x \right )+{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

7572

\[ {} \sqrt {y}+\left (x^{2}+4\right ) y^{\prime } = 0 \]

7577

\[ {} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 = 0 \]

7618

\[ {} y^{\prime \prime }+y = 0 \]

7634

\[ {} x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

7639

\[ {} \sin \left (x \right ) y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

7669

\[ {} z^{\prime \prime }+x z^{\prime }+z = x^{2}+2 x +1 \]

7670

\[ {} y^{\prime \prime }-2 x y^{\prime }+3 y = x^{2} \]

7671

\[ {} y-x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = \cos \left (x \right ) \]

7672

\[ {} 2 y-x y^{\prime }+y^{\prime \prime } = \cos \left (x \right ) \]

7673

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \left (x \right ) \]

7674

\[ {} y^{\prime \prime }-\sin \left (x \right ) y = \cos \left (x \right ) \]

7695

\[ {} x \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (-x^{2}+1\right )+\left (x -1\right ) y = 0 \]

7696

\[ {} \left (1-x \right ) x y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y = 0 \]

7701

\[ {} x y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

7702

\[ {} x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

7705

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+m y = 0 \]

7724

\[ {} x y+y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

7748

\[ {} y^{\prime } = \frac {2 x y+y^{2}}{x^{2}+2 x y} \]

7777

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 4 \sinh \left (x \right ) \]

7778

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 2 \cosh \left (2 x \right ) \]

7815

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = \frac {{\mathrm e}^{x}}{1+{\mathrm e}^{-x}} \]

7847

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

7858

\[ {} y = x y^{\prime }+{y^{\prime }}^{4} \]

7861

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7872

\[ {} y^{2} \left (x^{2}+2\right )+\left (y^{3}+x^{3}\right ) \left (y-x y^{\prime }\right ) = 0 \]

7873

\[ {} y \sqrt {x^{2}+y^{2}}-x \left (x +\sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0 \]

7897

\[ {} 2 u^{2}+2 u v+\left (u^{2}+v^{2}\right ) v^{\prime } = 0 \]

7898

\[ {} x \sqrt {x^{2}+y^{2}}-y+\left (y \sqrt {x^{2}+y^{2}}-x \right ) y^{\prime } = 0 \]

7900

\[ {} y^{2}-\frac {y}{x \left (x +y\right )}+2+\left (\frac {1}{x +y}+2 \left (1+x \right ) y\right ) y^{\prime } = 0 \]

7901

\[ {} 2 x y \,{\mathrm e}^{x^{2} y}+y^{2} {\mathrm e}^{x y^{2}}+1+\left (x^{2} {\mathrm e}^{x^{2} y}+2 x y \,{\mathrm e}^{x y^{2}}-2 y\right ) y^{\prime } = 0 \]

7916

\[ {} y+x \left (x^{2} y-1\right ) y^{\prime } = 0 \]

7917

\[ {} y+x^{3} y+2 x^{2}+\left (x +4 x y^{4}+8 y^{3}\right ) y^{\prime } = 0 \]

7923

\[ {} 3 x^{2} y^{2}+4 \left (x^{3} y-3\right ) y^{\prime } = 0 \]

7934

\[ {} \left (2 s-{\mathrm e}^{2 t}\right ) s^{\prime } = 2 s \,{\mathrm e}^{2 t}-2 \cos \left (2 t \right ) \]

7939

\[ {} \left (x -x \sqrt {x^{2}-y^{2}}\right ) y^{\prime }-y = 0 \]

7945

\[ {} 1+\sin \left (y\right ) = \left (2 y \cos \left (y\right )-x \left (\sec \left (y\right )+\tan \left (y\right )\right )\right ) y^{\prime } \]

7948

\[ {} x^{2} \cos \left (y\right ) y^{\prime } = 2 x \sin \left (y\right )-1 \]

7958

\[ {} y^{2} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

7960

\[ {} 16 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

7961

\[ {} x {y^{\prime }}^{5}-{y^{\prime }}^{4} y+\left (x^{2}+1\right ) {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+\left (x +y^{2}\right ) y^{\prime }-y = 0 \]

7962

\[ {} x {y^{\prime }}^{2}-y y^{\prime }-y = 0 \]

7963

\[ {} y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

7964

\[ {} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

7969

\[ {} y^{2} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

7972

\[ {} \left (3 y-1\right )^{2} {y^{\prime }}^{2} = 4 y \]

7974

\[ {} 2 y = {y^{\prime }}^{2}+4 x y^{\prime } \]

7976

\[ {} {y^{\prime }}^{3}-4 x^{4} y^{\prime }+8 x^{3} y = 0 \]

7977

\[ {} \left (1+{y^{\prime }}^{2}\right ) \left (x -y\right )^{2} = \left (y y^{\prime }+x \right )^{2} \]

7986

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 2 \]

7987

\[ {} {y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

8012

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = \frac {1}{1+{\mathrm e}^{-x}} \]

8040

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (1+x \right )-y = \ln \left (1+x \right )^{2}+x -1 \]

8041

\[ {} -12 y-2 \left (2 x +1\right ) y^{\prime }+\left (2 x +1\right )^{2} y^{\prime \prime } = 6 x \]

8042

\[ {} x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

8043

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 2 \]

8044

\[ {} \left (x^{2}+4\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 8 \]

8045

\[ {} \left (1+x \right ) y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+\left (x +2\right ) y = \left (x^{2}+2 x +1\right ) {\mathrm e}^{2 x} \]

8046

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0 \]

8047

\[ {} x^{2} y^{\prime \prime }-x \left (2 x +3\right ) y^{\prime }+\left (x^{2}+3 x +3\right ) y = \left (-x^{2}+6\right ) {\mathrm e}^{x} \]

8048

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0 \]

8049

\[ {} x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = \left (x^{2}-x +1\right ) {\mathrm e}^{x} \]

8051

\[ {} x^{8} y^{\prime \prime }+4 x^{7} y^{\prime }+y = \frac {1}{x^{3}} \]

8052

\[ {} \left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = x \]

8054

\[ {} \left (1+x \right ) y^{\prime \prime }-\left (3 x +4\right ) y^{\prime }+3 y = \left (2+3 x \right ) {\mathrm e}^{3 x} \]

8056

\[ {} x y^{\prime \prime }+2 y^{\prime }+4 x y = 4 \]

8057

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = \frac {-x^{2}+1}{x} \]

8062

\[ {} {y^{\prime }}^{3}+y y^{\prime \prime } = 0 \]

8063

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

8064

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \left (1-\cos \left (y\right ) y^{\prime }+y y^{\prime } \sin \left (y\right )\right ) \]

8065

\[ {} \left (2 x -3\right ) y^{\prime \prime \prime }-\left (6 x -7\right ) y^{\prime \prime }+4 x y^{\prime }-4 y = 8 \]

8066

\[ {} \left (2 x^{3}-1\right ) y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+6 x y^{\prime } = 0 \]

8067

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = \ln \left (y\right ) y^{2} \]

8068

\[ {} \left (2 y+x \right ) y^{\prime \prime }+2 {y^{\prime }}^{2}+2 y^{\prime } = 2 \]

8069

\[ {} \left (1+2 y+3 y^{2}\right ) y^{\prime \prime \prime }+6 y^{\prime } \left (y^{\prime \prime }+{y^{\prime }}^{2}+3 y y^{\prime \prime }\right ) = x \]

8070

\[ {} 3 x \left (y^{2} y^{\prime \prime \prime }+6 y y^{\prime } y^{\prime \prime }+2 {y^{\prime }}^{3}\right )-3 y \left (y y^{\prime \prime }+2 {y^{\prime }}^{2}\right ) = -\frac {2}{x} \]