4.14.6 Problems 501 to 600

Table 4.1133: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

Sympy

8725

\[ {} y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]

8726

\[ {} \left (x y^{\prime }+y\right )^{2} = y^{2} y^{\prime } \]

8727

\[ {} x^{2} {y^{\prime }}^{2}-3 y y^{\prime } x +2 y^{2} = 0 \]

8729

\[ {} y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

8800

\[ {} y y^{\prime }+x = a {y^{\prime }}^{2} \]

8801

\[ {} {y^{\prime }}^{2}-a^{2} y^{2} = 0 \]

8802

\[ {} {y^{\prime }}^{2} = 4 x^{2} \]

8830

\[ {} {y^{\prime }}^{2} = a^{2}-y^{2} \]

9069

\[ {} x y^{\prime }+y = x^{4} {y^{\prime }}^{2} \]

9721

\[ {} x^{2} {y^{\prime }}^{2}-y^{2} = 0 \]

9722

\[ {} x {y^{\prime }}^{2}-\left (2 x +3 y\right ) y^{\prime }+6 y = 0 \]

9723

\[ {} x^{2} {y^{\prime }}^{2}-5 y y^{\prime } x +6 y^{2} = 0 \]

9724

\[ {} x^{2} {y^{\prime }}^{2}+x y^{\prime }-y^{2}-y = 0 \]

9725

\[ {} x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

9726

\[ {} {y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

9727

\[ {} x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

9728

\[ {} {y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

9729

\[ {} \left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

9730

\[ {} y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

9731

\[ {} {y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3} = 0 \]

9732

\[ {} \left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

9733

\[ {} \left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

9734

\[ {} x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y = 0 \]

9735

\[ {} \left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

9736

\[ {} \left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0 \]

9737

\[ {} x y \left (x^{2}+y^{2}\right ) \left ({y^{\prime }}^{2}-1\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

9738

\[ {} x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

9739

\[ {} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

9740

\[ {} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

9741

\[ {} 3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

9742

\[ {} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

9743

\[ {} {y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

9744

\[ {} {y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

9745

\[ {} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

9746

\[ {} 4 y^{3} {y^{\prime }}^{2}+4 x y^{\prime }+y = 0 \]

9747

\[ {} {y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

9748

\[ {} y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

9749

\[ {} {y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y = 0 \]

9750

\[ {} {y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

9751

\[ {} 2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]

9752

\[ {} {y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

9753

\[ {} y = x y^{\prime }+k {y^{\prime }}^{2} \]

9754

\[ {} x^{8} {y^{\prime }}^{2}+3 x y^{\prime }+9 y = 0 \]

9755

\[ {} x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

9756

\[ {} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

9757

\[ {} 3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

9758

\[ {} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

9759

\[ {} y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]

9760

\[ {} x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0 \]

9761

\[ {} y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \]

9762

\[ {} {y^{\prime }}^{4} x -2 {y^{\prime }}^{3} y+12 x^{3} = 0 \]

9763

\[ {} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+1 = 0 \]

9764

\[ {} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

9765

\[ {} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

9766

\[ {} 2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0 \]

9767

\[ {} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

9768

\[ {} 4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

9769

\[ {} {y^{\prime }}^{3}-x y^{\prime }+2 y = 0 \]

9770

\[ {} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

9771

\[ {} 2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

9772

\[ {} 5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

9773

\[ {} {y^{\prime }}^{2}+3 x y^{\prime }-y = 0 \]

9774

\[ {} y = x y^{\prime }+x^{3} {y^{\prime }}^{2} \]

9819

\[ {} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+4 = 0 \]

9820

\[ {} 6 x {y^{\prime }}^{2}-\left (3 x +2 y\right ) y^{\prime }+y = 0 \]

9821

\[ {} 9 {y^{\prime }}^{2}+3 y^{4} y^{\prime } x +y^{5} = 0 \]

9822

\[ {} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

9823

\[ {} x^{6} {y^{\prime }}^{2}-2 x y^{\prime }-4 y = 0 \]

9824

\[ {} 5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0 \]

9825

\[ {} y^{2} {y^{\prime }}^{2}-\left (1+x \right ) y y^{\prime }+x = 0 \]

9826

\[ {} 4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

9827

\[ {} 4 y^{2} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

9828

\[ {} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

9829

\[ {} x^{2} {y^{\prime }}^{3}-2 x y {y^{\prime }}^{2}+y^{2} y^{\prime }+1 = 0 \]

9830

\[ {} 16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]

9831

\[ {} x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x = 0 \]

9832

\[ {} {y^{\prime }}^{3}-2 x y^{\prime }-y = 0 \]

9833

\[ {} 9 x y^{4} {y^{\prime }}^{2}-3 y^{5} y^{\prime }-1 = 0 \]

9834

\[ {} x^{2} {y^{\prime }}^{2}-\left (2 x y+1\right ) y^{\prime }+1+y^{2} = 0 \]

9835

\[ {} x^{6} {y^{\prime }}^{2} = 8 x y^{\prime }+16 y \]

9836

\[ {} x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

9837

\[ {} \left (1+y^{\prime }\right )^{2} \left (y-x y^{\prime }\right ) = 1 \]

9838

\[ {} {y^{\prime }}^{3}-{y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

9839

\[ {} x {y^{\prime }}^{2}+y \left (1-x \right ) y^{\prime }-y^{2} = 0 \]

9840

\[ {} y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

9841

\[ {} x {y^{\prime }}^{2}+\left (k -x -y\right ) y^{\prime }+y = 0 \]

9842

\[ {} x {y^{\prime }}^{3}-2 y {y^{\prime }}^{2}+4 x^{2} = 0 \]

10015

\[ {} \frac {{y^{\prime }}^{2}}{4}-x y^{\prime }+y = 0 \]

10021

\[ {} y = x y^{\prime }+x^{2} {y^{\prime }}^{2} \]

10027

\[ {} y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

10033

\[ {} x f^{\prime }-f = \frac {{f^{\prime }}^{2} \left (1-{f^{\prime }}^{\lambda }\right )^{2}}{\lambda ^{2}} \]

10042

\[ {} y = x {y^{\prime }}^{2} \]

10043

\[ {} y y^{\prime } = 1-x {y^{\prime }}^{3} \]

10076

\[ {} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

10077

\[ {} \frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x \]

10207

\[ {} {y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \]

10208

\[ {} \left (y-2 x y^{\prime }\right )^{2} = {y^{\prime }}^{3} \]

10262

\[ {} h^{2}+\frac {2 a h}{\sqrt {1+{h^{\prime }}^{2}}} = b^{2} \]

10315

\[ {} x \sin \left (x \right ) {y^{\prime }}^{2} = 0 \]

10316

\[ {} y {y^{\prime }}^{2} = 0 \]