1.3.1 Miscellaneous PDE’s

Table 1.6: Miscellaneous PDE’s breakdown of results. Time in seconds

#

PDE

description

Mathematica
Maple

hand solved?

Animated?





result

time

result

time

1

General first order

Transport equation ut+ux=0

0.024

0.089

Yes

2

General first order

Transport equation ut3ux=0 IC u(0,x)=ex2. Peter Olver textbook, 2.2.2 (a)

0.004

0.04

Yes

Yes

3

General first order

Transport equation ut+2ux=0 IC u(1,x)=x1+x2. Peter Olver textbook, 2.2.2 (b)

0.003

0.017

Yes

Yes

4

General first order

Transport equation ut+ux+12u=0 IC u(0,x)=arctan(x). Peter Olver textbook, 2.2.2 (c)

0.003

0.055

Yes

Yes

5

General first order

Transport equation ut4ux+u=0 IC u(0,x)=11+x2. Peter Olver textbook, 2.2.2 (d)

0.003

0.016

Yes

Yes

6

General first order

Transport equation ut+2ux=sinx IC u(0,x)=sinx. Peter Olver textbook, 2.2.5

0.049

0.049

Yes

Yes

7

General first order

Transport equation ut+11+x2ux=0 IC u(x,0)=11+(3+x)2. Peter Olver textbook, page 27

0.014

0.073

Yes

Yes

8

General first order

Transport equation utxux=0 IC u(x,0)=11+x2. Peter Olver textbook, problem 2.2.17

0.004

0.045

Yes

Yes

9

General first order

Transport equation ut+(12t)ux=0 IC u(x,0)=11+x2. Peter Olver textbook, problem 2.2.29

0.013

0.055

Yes

Yes

10

General first order

Transport equation ut+1x2+4ux=0 IC u(x,0)=ex3+12x

0.011

0.065

Yes

Yes

11

General first order

3ux+5uy=x

0.004

0.007

Yes

12

General first order

xuy+yux=4xyu and u(x,0)=ex2

0.01

0.049

Yes

13

General first order

ut+ux=0 and u(x,0)=sinx and u(0,t)=0

0.052

0.371

Yes

14

General first order

ut+cux=0 and u(x,0)=ex2

0.003

0.019

Yes

15

General first order

(Haberman 12.2.2) ωt3ωx=0 and ω(x,0)=cosx

0.003

0.016

Yes

16

General first order

(Haberman 12.2.4) ωt+cωx=0 and ω(x,0)=f(x) and ω(0,t)=h(t)

10.387


Solution contains unresolved invlaplace calls

0.243

Yes

17

General first order

(Haberman 12.2.5 (a)) ωt+cωx=e2x and ω(x,0)=f(x)

0.027

0.037

Yes

18

General first order

(Haberman 12.2.5 (d)) ωt+3tωx=ω(x,t) and ω(x,0)=f(x)

0.023

0.05

Yes

19

General first order

2ux+5uy=u2(x,y)+1

0.083

0.03

Yes

20

General first order

Clairaut equation xux+yuy+12((ux)2+(uy)2)=0

0.012

0.196

Yes

21

General first order

Clairaut equation. xux+yuy+12((ux)2+(uy)2)=0 with u(x,0)=12(1x2)

0.009

0.611

22

General first order

Clairaut equation. u=xux+yuy+sin(ux+uy)

0.016

0.013

23

General first order

Recover a function from its gradient vector

0.021

0.059

24

General first order

xfyfx=g(x)h(y)f2

0.038

0.036

Yes

25

General first order

fx+(fy)2=f(x,y,z)+z

0.047

0.464

26

General first order

xux+yuy=u (Example 3.5.1 in Lokenath Debnath)

0.007

0.01

Yes

27

General first order

xux+yuy=nu Example 3.5.2 in Lokenath Debnath

0.007

0.009

Yes

28

General first order

x2ux+y2uy=(x+y)u Example 3.5.3 in Lokenath Debnath

0.082

0.023

Yes

29

General first order

(yz)ux+(zx)uy+(xy)uz=0 (Example 3.5.4 in Lokenath Debnath)

(Timed out)

600.

1.899

Yes

30

General first order

u(x+y)ux+u(xy)uy=x2+y2 (Example 3.5.5 in Lokenath Debnath)

0.361


Maple does not accept this form of Cauchy data

0.154

Yes

31

General first order

uxuy=1 with u(x,0)=x2 Example 3.5.6 in Lokenath Debnath

0.003

0.014

32

General first order

(yx)ux+(ux)uy=xy with u=0 on xy=1 Example 3.5.7 in Lokenath Debnath


Kernel error

120.019

(Timed out)

600.

33

General first order

yux+xuy=u with u(x,0)=x3 and u(0,y)=y3 Example 3.5.8 in Lokenath Debnath

1.297

0.429

34

General first order

xux+yuy=xeu with u=0 on y=x2 Example 3.5.10 in Lokenath Debnath

0.1


Maple does not accept this form of Cauchy data

0.057

35

General first order

ut+uux=x with u(x,0)=f(x) Example 3.5.11 in Lokenath Debnath.


Kernel error

0.645

0.184

36

General first order

ux=0 Problem 3.3(a) Lokenath Debnath

0.003

0.002

37

General first order

aux+buy=0 Problem 3.3(b) Lokenath Debnath

0.004

0.007

38

General first order

ux+yuy=0 Problem 3.3(c) Lokenath Debnath

0.013

0.009

39

General first order

(1+x2)ux+uy=0 Problem 3.3(d) Lokenath Debnath

0.006

0.009

40

General first order

2xyux+(x2+y2)uy=0 Problem 3.3(e) Lokenath Debnath

0.102

0.023

41

General first order

(y+u)ux+yuy=xy Problem 3.3(f) Lokenath Debnath

4.092

0.319

42

General first order

y2uxxyuy=x(u2y) Problem 3.3(g) Lokenath Debnath

0.029

0.038

43

General first order

yuyxux=1 Problem 3.3(h) Lokenath Debnath

0.007

0.009

44

General first order

ux+2xy2uy=0 Problem 3.4 Lokenath Debnath

0.074

0.01

45

General first order

3ux+2uy=0 with u(x,0)=sinx. Problem 3.5(a) Lokenath Debnath

0.003

0.015

46

General first order

yux+xuy=0 with u(0,y)=ey2. Problem 3.5(b) Lokenath Debnath

0.01

0.024

47

General first order

xux+yuy=2xy with u=2 on y=x2. Problem 3.5(c) Lokenath Debnath

0.006


Maple does not accept this form of Cauchy data as I.C.

0.008

48

General first order

ux+xuy=0 with u(0,y)=siny. Problem 3.5(d) Lokenath Debnath

0.003

0.149

49

General first order

yux+xuy=xy with u(0,y)=ey2,u(x,0)=ex2. Problem 3.5(e) Lokenath Debnath

1.138

0.371

50

General first order

ux+xuy=(y12x2)2 with u(0,y)=ey. Problem 3.5(f) Lokenath Debnath

0.005

0.075

51

General first order

xux+yuy=u+1 with u=x2 on y=x2 Problem 3.5(g) Lokenath Debnath

0.007


Maple does not accept this form of Cauchy data as I.C.

0.01

52

General first order

uuxuuy=u2+(x+y)2 with u(x,0)=1 Problem 3.5(h) Lokenath Debnath

0.04

0.057

53

General first order

xux+(x+y)uy=u+1 with u(x,0)=x2 Problem 3.5(i) Lokenath Debnath

0.011

0.039

54

General first order

xux+yuy+zuz=0 Problem 3.8(a) .Lokenath Debnath

0.01

0.011

55

General first order

x2ux+y2uy+z(x+y)uz=0 Problem 3.8(b) Lokenath Debnath

0.089

0.016

56

General first order

x(yz)ux+y(zx)uy+z(xy)uz=0 Problem 3.8(c) Lokenath Debnath

0.027

0.68

57

General first order

yzuxxzuy+xy(x2+y2)uz=0 Problem 3.8(d) Lokenath Debnath

0.068

0.034

58

General first order

x(y2z2)ux+y(z2y2)uy+z(x2y2)uz=0 Problem 3.8(e) Lokenath Debnath

44.854

0.368

59

General first order

ux+xuy=y with u(0,y)=y2 Problem 3.9(a) Lokenath Debnath

0.004

0.016

60

General first order

ux+xuy=y with u(1,y)=2y Problem 3.9(b) Lokenath Debnath

0.005

0.007

61

General first order

(ux+uy)2u2=0. Problem 3.10 Lokenath Debnath

0.007

0.012

62

General first order

(y+u)ux+yuy=xy with u(x,1)=1+x. Problem 3.11 Lokenath Debnath

7.967

0.708

63

General first order

2xux+(x+1)uy=y with u(1,y)=2y. Problem 3.14(d) Lokenath Debnath

0.009

0.124

64

General first order

xux+yuy=x2+y2 with u(x,1)=x2. Problem 3.14(e) Lokenath Debnath

0.01

0.033

65

General first order

y2ux+(xy)uy=x with u(x,1)=x2. Problem 3.14(f) Lokenath Debnath

0.016

0.037

66

General first order

xux+yuy=xy with u=x22 at y=x. Problem 3.14(g) Lokenath Debnath


Mathematica does not support this Cauchy data I.C.

0.007


Maple does not support this Cauchy data I.C.

0.009

67

General first order

ux+uuy=1 with u(0,y)=ay. Problem 3.16(a) Lokenath Debnath

0.018

0.02

68

General first order

(y+u)ux+(x+u)uy=x+y. Problem 3.17(a) Lokenath Debnath

30.116

20.194

69

General first order

xu(u2+xy)uxyu(u2+xy)uy=x4. Problem 3.17(b) Lokenath Debnath

0.027

0.037

70

General first order

(x+y)ux+(xy)uy=0. Problem 3.17(c) Lokenath Debnath

0.028

0.045

71

General first order

yuxxuy=eu with u(0,y)=y21

0.12

0.085

Yes

72

General first order

yuxxuy=eu

0.054

0.002

Yes

73

General first order

ut+xux=0 with u(x,0)=x2. Math 5587

0.005

0.02

Yes

74

General first order

ut+tux=0 with u(x,0)=ex

0.009

0.03

Yes

75

General first order

2ux+3uy=1

0.004

0.007

Yes

76

General first order

xuttux=0

0.009

0.013

Yes

77

General first order

ut+ux=0 with u(x,1)=x1+x2

0.003

0.008

Yes

78

General first order

uxuy=1

0.002

0.013

Yes

79

General first order

uxuy=u with u(x,0)=0,u(0,y)=0

1.074

0.556

Yes

80

Solved by factoring into two transport equations

uxx+uxt6utt=0

0.514

0.082

Yes

81

Solved by factoring into two transport equations

uxxuxt12utt=0

1.554

0.246

Yes

82

Solved by factoring into two transport equations

uxx3uxt4utt=0

0.467

2.034

Yes

83

Solved by factoring into two transport equations

utt2uxt3uxx=0 with u(0,x)=x2,ut(x,0)=ex

0.392

1.312

84

Schrodinger PDE

pict

Logan textbook, page 30

0.377

0.487

85

Schrodinger PDE

pict

In a square, zero potential

0.259

2.934

86

Schrodinger PDE

pict

From Mathematica help pages

0.66

0.68

87

Schrodinger PDE

pict

From Mathematica help pages

0.005


Trivial solution. Maple does not support in boundary conditions

3.897

88

Schrodinger PDE

pict

David Griffiths, page 47

35.841

1.52

89

Schrodinger PDE

pict

David Griffiths, page 47

0.011

0.782

90

Schrodinger PDE

pict

In a square

0.011

2.282

91

Beam PDE

Beam PDE utt+uxxxx=0

0.206

0.229

92

Burger’s PDE

Inviscid Burgers ux+uuy=0


Implicit solution

0.027

0.019

Yes

93

Burger’s PDE

Inviscid Burgers with I.C. ux+uuy=0 and u(x,0)=1x+1

0.008

0.047

Yes

94

Burger’s PDE

ut+uux=μuxx

0.026

0.064

95

Burger’s PDE

ut+uux+μuxx with IC

21.53

0.655

96

Burger’s PDE

ut+uux+μuxx IC as UnitBox

24.232

0.788

97

Black Scholes PDE

classic Black Scholes model from finance, European call version

3.046

0.931

98

Black Scholes PDE

Boundary value problem for the Black Scholes equation

2.766

2.334

99

Korteweg-deVries PDE

uxxx+ut6uux=0

0.029

0.177

100

Tricomi PDE

uxx+yuyy=0 with u(x,0)=0,uy(x,0)=x2

4.196

3.212

101

Tricomi PDE

uxx+xuyy=0

0.005

1.635

102

Keldysh equation

xuxx+uyy=0

0.004

1.7

103

Euler-Poisson-Darboux equation

uxx+uyy+βxux=0

0.007

0.082

104

Euler-Poisson-Darboux equation

uxxuyy+βxux=0

0.006

0.26

105

Euler-Poisson-Darboux equation

uttuxx2xux=0 with u(x,0)=0,ut(x,0)=g(x)

1.963

3.855

106

Chaplygin’s equation

uθθ+v21v2c2uvv+vuv=0

0.021

0.889

107

Cauchy Riemann PDE’s

Cauchy Riemann PDE with Prescribe the values of u and v on the x axis

0.005

0.13

108

Cauchy Riemann PDE’s

Cauchy Riemann PDE With extra term on right side

0.001

0.052

109

Hamilton-Jacobi PDE

Hamilton-Jacobi type PDE

0.007

0.157

110

Airy PDE

ut+uxxx=0

0.002

0.064

Yes

111

Nonlinear PDE’s

Bateman-Burgers ut+uux=νuxx

0.02

0.06

112

Nonlinear PDE’s

Benjamin Bona Mahony ut+ux+uu+xuxxt=0

0.031

0.075

113

Nonlinear PDE’s

Benjamin Ono ut+Huxx+uux=0

0.02

0.062

114

Nonlinear PDE’s

Born Infeld (1ut2)uxx+2uxutuxt(1+ux2)utt=0

0.008

0.135

115

Nonlinear PDE’s

Boussinesq uttuxxuxxxx3(u2)xx=0

0.042

0.086

116

Nonlinear PDE’s

Boussinesq type uttuxx2α(uux)xβuxxtt=0

0.041

0.106

117

Nonlinear PDE’s

Buckmaster ut=(u4)xx+(u3)x

0.07


Answer in terms of RootOf.

0.352

118

Nonlinear PDE’s

Camassa Holm ut+2kuxuxxt+3uux=2uxuxx+uuxxx

0.174


Answer in terms of RootOf.

1.52

119

Nonlinear PDE’s

Chaffee Infante ut=uxx+λ(u3u)=0

0.093

0.176

120

Nonlinear PDE’s

Clarke. (θtγeθ)tt=(θteθ)xx

0.01

0.025

121

Nonlinear PDE’s

Degasperis Procesi utuxxt+4uux=3uxuxx+uuxxx

0.169


But still has unresolved ODE’s in solution

0.52

122

Nonlinear PDE’s

Dym equation ut=u3uxxx

0.083


has RootOf

0.375

123

Nonlinear PDE’s

Estevez Mansfield Clarkson utyyy+βuyuyt+βuyyut+utt=0

0.033

0.121

124

Nonlinear PDE’s

Fisher’s ut=u(1u)+uxx

0.05

0.165

125

Nonlinear PDE’s

Hunter Saxton (ut+uux))x=12(ux)2

0.044


with RootOf

0.107

126

Nonlinear PDE’s

Kadomtsev Petviashvili (ut+uux+ϵ2uxxx)x+λuyy=0

0.071

0.125

127

Nonlinear PDE’s

Klein Gordon uxx+uyy+λup=0

0.004

0.017

128

Nonlinear PDE’s

Klein Gordon uxx+uyy+u2=0

0.228

0.346

129

Nonlinear PDE’s

Khokhlov Zabolotskaya uxt(uux)x=uyy

0.057

0.237

130

Nonlinear PDE’s

Korteweg de Vries (KdV) ut+(ux)3+6uux=0

0.029

0.092

131

Nonlinear PDE’s

Lin Tsien 2utx+uxuxxuyy=0

0.072

0.243

132

Nonlinear PDE’s

Liouville uxx+uyy+eλu=0

0.004

0.017

133

Nonlinear PDE’s

Plateau (1+uy2)uxx2uxuyyxy+(1+ux2)uyy=0

0.032

0.156

134

Nonlinear PDE’s

Rayleigh uttuxx=ϵ(utut3)

0.078


Has RootOf

0.127

135

Nonlinear PDE’s

Sawada Kotera ut+45u2ux+15uxuxx+15uuxxx+uxxxxx=0

0.085

0.187

136

Nonlinear PDE’s

Sine Gordon ϕttϕxx+sinϕ=0

0.007

0.013

137

Nonlinear PDE’s

Sinh Gordon uxt=sinhu

0.007

0.014

138

Nonlinear PDE’s

Sinh Poisson uxx+uyy+sinhu=0

0.006

0.011

139

Nonlinear PDE’s

Thomas equation uxy+αux+βuy+νuxuy=0

0.06

0.339

140

Nonlinear PDE’s

phi equation ϕttϕxxϕ+ϕ3=0

0.043

0.472

141

more miscellaneous

SSxy+SxSy=1

0.031

0.023

142

more miscellaneous

urr+uθθ=0

0.012

0.513

143

more miscellaneous

uxx+yuyy=0

3.551

2.448

144

more miscellaneous

ut+uxxx=0

0.413

5.663

145

more miscellaneous

uxy=sin(x)sin(y)

0.271

0.426

146

more miscellaneous

wt=wx1x1+wx2x2+wx3x3

0.003

0.621

147

more miscellaneous

Linear PDE, initial conditions at t=t0

0.003

0.616

148

more miscellaneous

second order in time, Linear PDE, initial conditions at t=t0

0.003

2.179

149

more miscellaneous

Einstein-Weiner ut=βux+Duxx

0.004

0.194

150

more miscellaneous

Using integral transforms. x22x2u(x,y)+xxu(x,y)+2y2u(x,y)=0

0.982

2.129