1.3.1 Miscellaneous PDE’s

Table 1.6: Miscellaneous PDE’s breakdown of results. Time in seconds

#

PDE

description

Mathematica
Maple

hand solved?

Animated?





result

time

result

time

1

General first order

Transport equation \(u_t+ u_x = 0\)

0.024

0.089

Yes

2

General first order

Transport equation \(u_t-3 u_x = 0\) IC \(u(0,x)=e^{-x^2}\). Peter Olver textbook, 2.2.2 (a)

0.004

0.04

Yes

Yes

3

General first order

Transport equation \(u_t+2 u_x = 0\) IC \(u(-1,x)=\frac {x}{1+x^2}\). Peter Olver textbook, 2.2.2 (b)

0.003

0.017

Yes

Yes

4

General first order

Transport equation \(u_t+u_x+\frac {1}{2}u = 0\) IC \(u(0,x)=\arctan (x)\). Peter Olver textbook, 2.2.2 (c)

0.003

0.055

Yes

Yes

5

General first order

Transport equation \(u_t-4u_x+u = 0\) IC \(u(0,x)=\frac {1}{1+x^2}\). Peter Olver textbook, 2.2.2 (d)

0.003

0.016

Yes

Yes

6

General first order

Transport equation \(u_t+2 u_x= \sin x\) IC \(u(0,x)=\sin x\). Peter Olver textbook, 2.2.5

0.049

0.049

Yes

Yes

7

General first order

Transport equation \(u_t+\frac {1}{1+x^2} u_x= 0\) IC \(u(x,0)=\frac {1}{1+(3+x)^2}\). Peter Olver textbook, page 27

0.014

0.073

Yes

Yes

8

General first order

Transport equation \(u_t-x u_x= 0\) IC \(u(x,0)=\frac {1}{1+x^2}\). Peter Olver textbook, problem 2.2.17

0.004

0.045

Yes

Yes

9

General first order

Transport equation \(u_t+(1-2 t) u_x= 0\) IC \(u(x,0)=\frac {1}{1+x^2}\). Peter Olver textbook, problem 2.2.29

0.013

0.055

Yes

Yes

10

General first order

Transport equation \(u_t+\frac {1}{x^2+4} u_x= 0\) IC \(u(x,0)=e^{x^3+12 x}\)

0.011

0.065

Yes

Yes

11

General first order

\(3 u_x + 5 u_y = x\)

0.004

0.007

Yes

12

General first order

\(x u_y + y u_x = -4 x y u\) and \(u(x,0)=e^{-x^2}\)

0.01

0.049

Yes

13

General first order

\(u_t + u_x = 0\) and \(u(x,0)=\sin x\) and \(u(0,t)=0\)

0.052

0.371

Yes

14

General first order

\(u_t+ c u_x = 0\) and \(u(x,0)=e^{-x^2}\)

0.003

0.019

Yes

15

General first order

(Haberman 12.2.2) \(\omega _t -3 \omega _x = 0\) and \(\omega (x,0)=\cos x\)

0.003

0.016

Yes

16

General first order

(Haberman 12.2.4) \(\omega _t +c \omega _x = 0\) and \(\omega (x,0)=f(x)\) and \(\omega (0,t)=h(t)\)

10.387


Solution contains unresolved invlaplace calls

0.243

Yes

17

General first order

(Haberman 12.2.5 (a)) \(\omega _t +c \omega _x = e^{2 x}\) and \(\omega (x,0)=f(x)\)

0.027

0.037

Yes

18

General first order

(Haberman 12.2.5 (d)) \(\omega _t +3 t \omega _x = \omega (x,t)\) and \(\omega (x,0)=f(x)\)

0.023

0.05

Yes

19

General first order

\( 2 u_x + 5 u_y = u^2(x,y) + 1\)

0.083

0.03

Yes

20

General first order

Clairaut equation \(x u_x + y u_y + \frac {1}{2} ( (u_x)^2+ (u_y)^2 ) = 0\)

0.012

0.196

Yes

21

General first order

Clairaut equation. \(x u_x + y u_y + \frac {1}{2} ( (u_x)^2+ (u_y)^2 ) = 0\) with \(u(x,0)= \frac {1}{2} (1-x^2)\)

0.009

0.611

22

General first order

Clairaut equation. \(u = x u_x+ y u_y + \sin ( u_x + u_y )\)

0.016

0.013

23

General first order

Recover a function from its gradient vector

0.021

0.059

24

General first order

\(x f_y - f_x = \frac {g(x)}{h(y)} f^2\)

0.038

0.036

Yes

25

General first order

\(f_x + (f_y)^2 = f(x,y,z)+z\)

0.047

0.464

26

General first order

\(x u_x+y u_y=u\) (Example 3.5.1 in Lokenath Debnath)

0.007

0.01

Yes

27

General first order

\(x u_x+y u_y=n u\) Example 3.5.2 in Lokenath Debnath

0.007

0.009

Yes

28

General first order

\(x^2 u_x+y^2 u_y=(x+y) u\) Example 3.5.3 in Lokenath Debnath

0.082

0.023

Yes

29

General first order

\((y-z) u_x + (z-x) u_y + (x-y) u_z = 0\) (Example 3.5.4 in Lokenath Debnath)

(Timed out)

600.

1.899

Yes

30

General first order

\(u(x+y) u_x+u(x-y) u_y=x^2+y^2\) (Example 3.5.5 in Lokenath Debnath)

0.361


Maple does not accept this form of Cauchy data

0.154

Yes

31

General first order

\(u_x-u_y=1\) with \(u(x,0)=x^2\) Example 3.5.6 in Lokenath Debnath

0.003

0.014

32

General first order

\((y-x)u_x+(u-x)u_y=x-y\) with \(u=0\) on \(x y=1\) Example 3.5.7 in Lokenath Debnath


Kernel error

120.019

(Timed out)

600.

33

General first order

\(y u_x+x u_y=u\) with \(u(x,0)=x^3\) and \(u(0,y)=y^3\) Example 3.5.8 in Lokenath Debnath

1.297

0.429

34

General first order

\(x u_x+y u_y=x e^{-u}\) with \(u=0\) on \(y=x^2\) Example 3.5.10 in Lokenath Debnath

0.1


Maple does not accept this form of Cauchy data

0.057

35

General first order

\(u_t+u u_x=x\) with \(u(x,0)=f(x)\) Example 3.5.11 in Lokenath Debnath.


Kernel error

0.645

0.184

36

General first order

\(u_x=0\) Problem 3.3(a) Lokenath Debnath

0.003

0.002

37

General first order

\(a u_x+b u_y=0\) Problem 3.3(b) Lokenath Debnath

0.004

0.007

38

General first order

\(u_x+y u_y=0\) Problem 3.3(c) Lokenath Debnath

0.013

0.009

39

General first order

\((1+x^2) u_x+ u_y=0\) Problem 3.3(d) Lokenath Debnath

0.006

0.009

40

General first order

\(2 x y u_x+(x^2+y^2)u_y=0\) Problem 3.3(e) Lokenath Debnath

0.102

0.023

41

General first order

\((y+u) u_x+y u_y=x-y\) Problem 3.3(f) Lokenath Debnath

4.092

0.319

42

General first order

\(y^2 u_x- x y u_y=x(u-2 y)\) Problem 3.3(g) Lokenath Debnath

0.029

0.038

43

General first order

\(y u_y - x u_x = 1\) Problem 3.3(h) Lokenath Debnath

0.007

0.009

44

General first order

\(u_x+2 x y^2 u_y=0\) Problem 3.4 Lokenath Debnath

0.074

0.01

45

General first order

\(3 u_x+2 u_y=0\) with \(u(x,0)=\sin x\). Problem 3.5(a) Lokenath Debnath

0.003

0.015

46

General first order

\(y u_x+x u_y=0\) with \(u(0,y)=e^{-y^2}\). Problem 3.5(b) Lokenath Debnath

0.01

0.024

47

General first order

\(x u_x+y u_y=2 x y\) with \(u=2\) on \(y=x^2\). Problem 3.5(c) Lokenath Debnath

0.006


Maple does not accept this form of Cauchy data as I.C.

0.008

48

General first order

\(u_x+x u_y=0\) with \(u(0,y)=\sin y\). Problem 3.5(d) Lokenath Debnath

0.003

0.149

49

General first order

\(y u_x+x u_y=x y\) with \(u(0,y)=e^{-y^2},u(x,0)=e^{-x^2}\). Problem 3.5(e) Lokenath Debnath

1.138

0.371

50

General first order

\(u_x+x u_y=(y-\frac {1}{2}x^2)^2\) with \(u(0,y)=e^{y}\). Problem 3.5(f) Lokenath Debnath

0.005

0.075

51

General first order

\(x u_x+y u_y=u+1\) with \(u=x^2\) on \(y=x^2\) Problem 3.5(g) Lokenath Debnath

0.007


Maple does not accept this form of Cauchy data as I.C.

0.01

52

General first order

\(u u_x - u u_y= u^2 + (x+y)^2\) with \(u(x,0)=1\) Problem 3.5(h) Lokenath Debnath

0.04

0.057

53

General first order

\(x u_x+(x+y)u_y=u+1\) with \(u(x,0)=x^2\) Problem 3.5(i) Lokenath Debnath

0.011

0.039

54

General first order

\(x u_x+y u_y+z u_z=0\) Problem 3.8(a) .Lokenath Debnath

0.01

0.011

55

General first order

\(x^2 u_x+y^2 u_y+z(x+y)u_z=0\) Problem 3.8(b) Lokenath Debnath

0.089

0.016

56

General first order

\(x(y-z)u_x+y(z-x)u_y+z(x-y)u_z=0\) Problem 3.8(c) Lokenath Debnath

0.027

0.68

57

General first order

\(y z u_x - x z u_y+ x y (x^2+y^2) u_z=0\) Problem 3.8(d) Lokenath Debnath

0.068

0.034

58

General first order

\(x(y^2-z^2) u_x + y(z^2-y^2) u_y+ z (x^2-y^2) u_z=0\) Problem 3.8(e) Lokenath Debnath

44.854

0.368

59

General first order

\(u_x+x u_y=y\) with \(u(0,y)=y^2\) Problem 3.9(a) Lokenath Debnath

0.004

0.016

60

General first order

\(u_x+x u_y=y\) with \(u(1,y)=2 y\) Problem 3.9(b) Lokenath Debnath

0.005

0.007

61

General first order

\((u_x+u_y)^2-u^2=0\). Problem 3.10 Lokenath Debnath

0.007

0.012

62

General first order

\((y+u)u_x+y u_y=x-y\) with \(u(x,1)=1+x\). Problem 3.11 Lokenath Debnath

7.967

0.708

63

General first order

\(2 x u_x+(x+1) u_y=y\) with \(u(1,y)=2 y\). Problem 3.14(d) Lokenath Debnath

0.009

0.124

64

General first order

\(x u_x+y u_y=x^2+y^2\) with \(u(x,1)=x^2\). Problem 3.14(e) Lokenath Debnath

0.01

0.033

65

General first order

\(y^2 u_x+(x y) u_y=x\) with \(u(x,1)=x^2\). Problem 3.14(f) Lokenath Debnath

0.016

0.037

66

General first order

\(x u_x+y u_y=x y\) with \(u=\frac {x^2}{2}\) at \(y=x\). Problem 3.14(g) Lokenath Debnath


Mathematica does not support this Cauchy data I.C.

0.007


Maple does not support this Cauchy data I.C.

0.009

67

General first order

\(u_x+u u_y=1\) with \(u(0,y)=a y\). Problem 3.16(a) Lokenath Debnath

0.018

0.02

68

General first order

\((y+u)u_x+(x+u)u_y=x+y\). Problem 3.17(a) Lokenath Debnath

30.116

20.194

69

General first order

\(x u(u^2+x y)u_x - y u(u^2+x y) u_y = x^4\). Problem 3.17(b) Lokenath Debnath

0.027

0.037

70

General first order

\((x+y) u_x + (x-y)u_y =0\). Problem 3.17(c) Lokenath Debnath

0.028

0.045

71

General first order

\(y u_x - x u_y = e^u\) with \(u(0,y)=y^2-1\)

0.12

0.085

Yes

72

General first order

\(y u_x - x u_y = e^u\)

0.054

0.002

Yes

73

General first order

\(u_t + x u_x = 0\) with \(u(x,0)=x^2\). Math 5587

0.005

0.02

Yes

74

General first order

\(u_t + t u_x = 0\) with \(u(x,0)=e^x\)

0.009

0.03

Yes

75

General first order

\(2 u_x + 3 u_y = 1\)

0.004

0.007

Yes

76

General first order

\(x u_t - t u_x = 0\)

0.009

0.013

Yes

77

General first order

\(u_t + u_x = 0\) with \(u(x,1)=\frac {x}{1+x^2}\)

0.003

0.008

Yes

78

General first order

\(u_x u_y = 1\)

0.002

0.013

Yes

79

General first order

\(u_x u_y = u\) with \(u(x,0)=0,u(0,y)=0\)

1.074

0.556

Yes

80

Solved by factoring into two transport equations

\(u_{xx} + u_{xt} - 6 u_{tt} = 0\)

0.514

0.082

Yes

81

Solved by factoring into two transport equations

\(u_{xx} - u_{xt} - 12 u_{tt} = 0\)

1.554

0.246

Yes

82

Solved by factoring into two transport equations

\(u_{xx} - 3 u_{xt} - 4 u_{tt} = 0\)

0.467

2.034

Yes

83

Solved by factoring into two transport equations

\(u_{tt} - 2 u_{xt} - 3 u_{xx} = 0\) with \(u(0,x)=x^2, u_t(x,0)=e^x\)

0.392

1.312

84

Schrodinger PDE

pict

Logan textbook, page 30

0.377

0.487

85

Schrodinger PDE

pict

In a square, zero potential

0.259

2.934

86

Schrodinger PDE

pict

From Mathematica help pages

0.66

0.68

87

Schrodinger PDE

pict

From Mathematica help pages

0.005


Trivial solution. Maple does not support \(\infty \) in boundary conditions

3.897

88

Schrodinger PDE

pict

David Griffiths, page 47

35.841

1.52

89

Schrodinger PDE

pict

David Griffiths, page 47

0.011

0.782

90

Schrodinger PDE

pict

In a square

0.011

2.282

91

Beam PDE

Beam PDE \(u_{tt} + u_{xxxx} = 0\)

0.206

0.229

92

Burger’s PDE

Inviscid Burgers \(u_x + u u_y = 0\)


Implicit solution

0.027

0.019

Yes

93

Burger’s PDE

Inviscid Burgers with I.C. \(u_x+ u u_y = 0\) and \(u(x,0)=\frac {1}{x+1}\)

0.008

0.047

Yes

94

Burger’s PDE

\(u_t+ u u_x = \mu u_{xx}\)

0.026

0.064

95

Burger’s PDE

\(u_t + u u_x + \mu u_{xx}\) with IC

21.53

0.655

96

Burger’s PDE

\(u_t + u u_x + \mu u_{xx}\) IC as UnitBox

24.232

0.788

97

Black Scholes PDE

classic Black Scholes model from finance, European call version

3.046

0.931

98

Black Scholes PDE

Boundary value problem for the Black Scholes equation

2.766

2.334

99

Korteweg-deVries PDE

\(u_{xxx} + u_t -6 u u_x = 0\)

0.029

0.177

100

Tricomi PDE

\(u_{xx} + y u_{yy} = 0\) with \(u(x,0)=0,u_y(x,0)=x^2\)

4.196

3.212

101

Tricomi PDE

\(u_{xx} + x u_{yy} = 0\)

0.005

1.635

102

Keldysh equation

\(x u_{xx} + u_{yy} = 0\)

0.004

1.7

103

Euler-Poisson-Darboux equation

\(u_{xx} + u_{yy} + \frac {\beta }{x} u_x = 0\)

0.007

0.082

104

Euler-Poisson-Darboux equation

\(u_{xx} - u_{yy} + \frac {\beta }{x} u_x = 0\)

0.006

0.26

105

Euler-Poisson-Darboux equation

\(u_{tt} - u_{xx} - \frac {2}{x} u_x = 0\) with \(u(x,0)=0,u_t(x,0)=g(x)\)

1.963

3.855

106

Chaplygin’s equation

\(u_{\theta \theta }+\frac {v^2}{1-\frac {v^2}{c^2}} u_{vv} + v u_v=0\)

0.021

0.889

107

Cauchy Riemann PDE’s

Cauchy Riemann PDE with Prescribe the values of \(u\) and \(v\) on the \(x\) axis

0.005

0.13

108

Cauchy Riemann PDE’s

Cauchy Riemann PDE With extra term on right side

0.001

0.052

109

Hamilton-Jacobi PDE

Hamilton-Jacobi type PDE

0.007

0.157

110

Airy PDE

\(u_t + u_{xxx} = 0\)

0.002

0.064

Yes

111

Nonlinear PDE’s

Bateman-Burgers \(u_t+u u_x = \nu u_{xx}\)

0.02

0.06

112

Nonlinear PDE’s

Benjamin Bona Mahony \(u_t+u_x + u u+x - u_{xxt} = 0\)

0.031

0.075

113

Nonlinear PDE’s

Benjamin Ono \(u_t+H u_{xx} +u u_x = 0\)

0.02

0.062

114

Nonlinear PDE’s

Born Infeld \((1-u_t^2) u_{xx} + 2 u_x u_t u_{xt} - (1+ u_x^2) u_{tt}=0\)

0.008

0.135

115

Nonlinear PDE’s

Boussinesq \(u_{tt}-u_{xx}-u_{xxxx} - 3 (u^2)_{xx} = 0\)

0.042

0.086

116

Nonlinear PDE’s

Boussinesq type \(u_{tt}-u_{xx}-2 \alpha (u u_x)_x - \beta u_{xxtt} = 0\)

0.041

0.106

117

Nonlinear PDE’s

Buckmaster \( u_t = (u^4)_{xx} + (u^3)_x\)

0.07


Answer in terms of RootOf.

0.352

118

Nonlinear PDE’s

Camassa Holm \(u_t + 2 k u_x - u_{xxt} + 3 u u_x = 2 u_x u_{xx}+ u u_{xxx}\)

0.174


Answer in terms of RootOf.

1.52

119

Nonlinear PDE’s

Chaffee Infante \(u_t = u_{xx} + \lambda (u^3 - u) = 0\)

0.093

0.176

120

Nonlinear PDE’s

Clarke. \(\left ( \theta _t - \gamma e^\theta \right )_{tt} = \left ( \theta _t - e^\theta \right )_{xx}\)

0.01

0.025

121

Nonlinear PDE’s

Degasperis Procesi \(u_t - u_{xxt} + 4 u u_x = 3 u_x u_xx + u u_{xxx}\)

0.169


But still has unresolved ODE’s in solution

0.52

122

Nonlinear PDE’s

Dym equation \(u_t =u^3 u_{xxx}\)

0.083


has RootOf

0.375

123

Nonlinear PDE’s

Estevez Mansfield Clarkson \(u_{tyyy} + \beta u_y u_{yt} + \beta u_{yy} u_t + u_{tt} = 0\)

0.033

0.121

124

Nonlinear PDE’s

Fisher’s \(u_t = u(1-u)+u_{xx}\)

0.05

0.165

125

Nonlinear PDE’s

Hunter Saxton \(\left ( u_t + u u_x) \right )_x = \frac {1}{2} (u_x)^2\)

0.044


with RootOf

0.107

126

Nonlinear PDE’s

Kadomtsev Petviashvili \( \left ( u_t + u u_x + \epsilon ^2 u_{xxx} \right )_x + \lambda u_{yy} = 0 \)

0.071

0.125

127

Nonlinear PDE’s

Klein Gordon \(u_{xx}+u_{yy}+ \lambda u^p=0\)

0.004

0.017

128

Nonlinear PDE’s

Klein Gordon \(u_{xx}+u_{yy}+ u^2=0\)

0.228

0.346

129

Nonlinear PDE’s

Khokhlov Zabolotskaya \(u_{x t} - (u u_x)_x = u_{yy}\)

0.057

0.237

130

Nonlinear PDE’s

Korteweg de Vries (KdV) \(u_t + (u_x)^3+ 6 u u_x = 0\)

0.029

0.092

131

Nonlinear PDE’s

Lin Tsien \(2 u_{tx} + u_x u_{xx} - u_{yy} = 0\)

0.072

0.243

132

Nonlinear PDE’s

Liouville \(u_{xx} + u_{yy} +e^{\lambda u} = 0\)

0.004

0.017

133

Nonlinear PDE’s

Plateau \((1+u_y^2)u_{xx} - 2 u_x u_y y_{xy} + (1+u_x^2) u_{yy} = 0\)

0.032

0.156

134

Nonlinear PDE’s

Rayleigh \(u_{tt} - u_{xx} = \epsilon (u_t - u_t^3)\)

0.078


Has RootOf

0.127

135

Nonlinear PDE’s

Sawada Kotera \(u_t + 45 u^2 u_x + 15 u_x u_{xx} + 15 u u_{xxx} + u_{xxxxx} = 0 \)

0.085

0.187

136

Nonlinear PDE’s

Sine Gordon \(\phi _{tt} - \phi _{xx} + \sin \phi = 0\)

0.007

0.013

137

Nonlinear PDE’s

Sinh Gordon \( u_{xt} = \sinh u\)

0.007

0.014

138

Nonlinear PDE’s

Sinh Poisson \(u_{xx}+u_{yy} + \sinh u=0\)

0.006

0.011

139

Nonlinear PDE’s

Thomas equation \( u_{xy} + \alpha u_x + \beta u_y+ \nu u_x u_y =0\)

0.06

0.339

140

Nonlinear PDE’s

phi equation \(\phi _{tt} - \phi _{xx} - \phi + \phi ^3 = 0\)

0.043

0.472

141

more miscellaneous

\(S S_{xy} + S_x S_y = 1\)

0.031

0.023

142

more miscellaneous

\(u_{rr} + u_{\theta \theta } = 0\)

0.012

0.513

143

more miscellaneous

\( u_{xx} + y u_{yy} = 0\)

3.551

2.448

144

more miscellaneous

\(u_t + u_{xxx} = 0\)

0.413

5.663

145

more miscellaneous

\(u_{xy} = \sin (x) \sin (y) \)

0.271

0.426

146

more miscellaneous

\(w_t = w_{x_1 x_1} + w_{x_2 x_2} + w_{x_3 x_3}\)

0.003

0.621

147

more miscellaneous

Linear PDE, initial conditions at \(t=t_0\)

0.003

0.616

148

more miscellaneous

second order in time, Linear PDE, initial conditions at \(t=t_0\)

0.003

2.179

149

more miscellaneous

Einstein-Weiner \(u_t = -\beta u_x + D u_{xx}\)

0.004

0.194

150

more miscellaneous

Using integral transforms. \({x}^{2}{\frac {\partial ^{2}}{\partial {x}^{2}}}u \left ( x,y \right ) +x{\frac {\partial }{\partial x}}u \left ( x,y \right ) +{\frac {\partial ^{2}}{\partial {y}^{2}}}u \left ( x,y \right ) =0\)

0.982

2.129