# |
PDE |
description |
Mathematica
| Maple
|
hand solved? |
Animated? |
||
|
|
|
result |
time |
result |
time |
|
|
|
||||||||
1 |
Transport equation |
✓ |
0.024 |
✓ |
0.089 |
Yes |
|
|
2 |
Transport equation |
✓ |
0.004 |
✓ |
0.04 |
Yes |
Yes |
|
3 |
Transport equation |
✓ |
0.003 |
✓ |
0.017 |
Yes |
Yes |
|
4 |
Transport equation |
✓ |
0.003 |
✓ |
0.055 |
Yes |
Yes |
|
5 |
Transport equation |
✓ |
0.003 |
✓ |
0.016 |
Yes |
Yes |
|
6 |
Transport equation |
✓ |
0.049 |
✓ |
0.049 |
Yes |
Yes |
|
7 |
Transport equation |
✓ |
0.014 |
✓ |
0.073 |
Yes |
Yes |
|
8 |
Transport equation |
✓ |
0.004 |
✓ |
0.045 |
Yes |
Yes |
|
9 |
Transport equation |
✓ |
0.013 |
✓ |
0.055 |
Yes |
Yes |
|
10 |
Transport equation |
✓ |
0.011 |
✓ |
0.065 |
Yes |
Yes |
|
11 |
|
✓ |
0.004 |
✓ |
0.007 |
Yes |
|
|
12 |
|
✓ |
0.01 |
✓ |
0.049 |
Yes |
|
|
13 |
|
✓ |
0.052 |
✓ |
0.371 |
Yes |
|
|
14 |
|
✓ |
0.003 |
✓ |
0.019 |
Yes |
|
|
15 |
(Haberman 12.2.2) |
✓ |
0.003 |
✓ |
0.016 |
Yes |
|
|
16 |
(Haberman 12.2.4) |
✗ |
10.387 |
✓ |
0.243 |
Yes |
|
|
17 |
(Haberman 12.2.5 (a)) |
✓ |
0.027 |
✓ |
0.037 |
Yes |
|
|
18 |
(Haberman 12.2.5 (d)) |
✓ |
0.023 |
✓ |
0.05 |
Yes |
|
|
19 |
|
✓ |
0.083 |
✓ |
0.03 |
Yes |
|
|
20 |
Clairaut equation |
✓ |
0.012 |
✓ |
0.196 |
Yes |
|
|
21 |
Clairaut equation. |
✓ |
0.009 |
✓ |
0.611 |
|
|
|
22 |
Clairaut equation. |
✓ |
0.016 |
✓ |
0.013 |
|
|
|
23 |
Recover a function from its gradient vector |
✓ |
0.021 |
✓ |
0.059 |
|
|
|
24 |
|
✓ |
0.038 |
✓ |
0.036 |
Yes |
|
|
25 |
|
✓ |
0.047 |
✓ |
0.464 |
|
|
|
26 |
|
✓ |
0.007 |
✓ |
0.01 |
Yes |
|
|
27 |
|
✓ |
0.007 |
✓ |
0.009 |
Yes |
|
|
28 |
|
✓ |
0.082 |
✓ |
0.023 |
Yes |
|
|
29 |
|
✗ (Timed out) |
600. |
✓ |
1.899 |
Yes |
|
|
30 |
|
✓ |
0.361 |
✓ |
0.154 |
Yes |
|
|
31 |
|
✓ |
0.003 |
✓ |
0.014 |
|
|
|
32 |
|
✗ |
120.019 |
✗ (Timed out) |
600. |
|
|
|
33 |
|
✗ |
1.297 |
✗ |
0.429 |
|
|
|
34 |
|
✓ |
0.1 |
✓ |
0.057 |
|
|
|
35 |
|
✗ |
0.645 |
✓ |
0.184 |
|
|
|
36 |
|
✓ |
0.003 |
✓ |
0.002 |
|
|
|
37 |
|
✓ |
0.004 |
✓ |
0.007 |
|
|
|
38 |
|
✓ |
0.013 |
✓ |
0.009 |
|
|
|
39 |
|
✓ |
0.006 |
✓ |
0.009 |
|
|
|
40 |
|
✓ |
0.102 |
✓ |
0.023 |
|
|
|
41 |
|
✗ |
4.092 |
✓ |
0.319 |
|
|
|
42 |
|
✓ |
0.029 |
✓ |
0.038 |
|
|
|
43 |
|
✓ |
0.007 |
✓ |
0.009 |
|
|
|
44 |
|
✓ |
0.074 |
✓ |
0.01 |
|
|
|
45 |
|
✓ |
0.003 |
✓ |
0.015 |
|
|
|
46 |
|
✓ |
0.01 |
✓ |
0.024 |
|
|
|
47 |
|
✓ |
0.006 |
✓ |
0.008 |
|
|
|
48 |
|
✓ |
0.003 |
✓ |
0.149 |
|
|
|
49 |
|
✗ |
1.138 |
✗ |
0.371 |
|
|
|
50 |
|
✓ |
0.005 |
✓ |
0.075 |
|
|
|
51 |
|
✓ |
0.007 |
✓ |
0.01 |
|
|
|
52 |
|
✓ |
0.04 |
✓ |
0.057 |
|
|
|
53 |
|
✓ |
0.011 |
✓ |
0.039 |
|
|
|
54 |
|
✓ |
0.01 |
✓ |
0.011 |
|
|
|
55 |
|
✓ |
0.089 |
✓ |
0.016 |
|
|
|
56 |
|
✓ |
0.027 |
✓ |
0.68 |
|
|
|
57 |
|
✓ |
0.068 |
✓ |
0.034 |
|
|
|
58 |
|
✗ |
44.854 |
✗ |
0.368 |
|
|
|
59 |
|
✓ |
0.004 |
✓ |
0.016 |
|
|
|
60 |
|
✓ |
0.005 |
✓ |
0.007 |
|
|
|
61 |
|
✓ |
0.007 |
✓ |
0.012 |
|
|
|
62 |
|
✗ |
7.967 |
✗ |
0.708 |
|
|
|
63 |
|
✓ |
0.009 |
✓ |
0.124 |
|
|
|
64 |
|
✓ |
0.01 |
✓ |
0.033 |
|
|
|
65 |
|
✓ |
0.016 |
✓ |
0.037 |
|
|
|
66 |
|
✓ |
0.007 |
✓ |
0.009 |
|
|
|
67 |
|
✓ |
0.018 |
✓ |
0.02 |
|
|
|
68 |
|
✗ |
30.116 |
✓ |
20.194 |
|
|
|
69 |
|
✓ |
0.027 |
✓ |
0.037 |
|
|
|
70 |
|
✓ |
0.028 |
✓ |
0.045 |
|
|
|
71 |
|
✓ |
0.12 |
✓ |
0.085 |
Yes |
|
|
72 |
|
✓ |
0.054 |
✓ |
0.002 |
Yes |
|
|
73 |
|
✓ |
0.005 |
✓ |
0.02 |
Yes |
|
|
74 |
|
✓ |
0.009 |
✓ |
0.03 |
Yes |
|
|
75 |
|
✓ |
0.004 |
✓ |
0.007 |
Yes |
|
|
76 |
|
✓ |
0.009 |
✓ |
0.013 |
Yes |
|
|
77 |
|
✓ |
0.003 |
✓ |
0.008 |
Yes |
|
|
78 |
|
✓ |
0.002 |
✓ |
0.013 |
Yes |
|
|
79 |
|
✗ |
1.074 |
✓ |
0.556 |
Yes |
|
|
80 |
|
✓ |
0.514 |
✓ |
0.082 |
Yes |
|
|
81 |
|
✗ |
1.554 |
✓ |
0.246 |
Yes |
|
|
82 |
|
✗ |
0.467 |
✓ |
2.034 |
Yes |
|
|
83 |
|
✗ |
0.392 |
✓ |
1.312 |
|
|
|
84 |
Logan textbook, page 30 |
✓ |
0.377 |
✓ |
0.487 |
|
|
|
85 |
In a square, zero potential |
✓ |
0.259 |
✓ |
2.934 |
|
|
|
86 |
From Mathematica help pages |
✓ |
0.66 |
✓ |
0.68 |
|
|
|
87 |
From Mathematica help pages |
✓ |
0.005 |
✗ |
3.897 |
|
|
|
88 |
David Griffiths, page 47 |
✓ |
35.841 |
✓ |
1.52 |
|
|
|
89 |
David Griffiths, page 47 |
✓ |
0.011 |
✓ |
0.782 |
|
|
|
90 |
In a square |
✓ |
0.011 |
✓ |
2.282 |
|
|
|
91 |
Beam PDE |
✓ |
0.206 |
✓ |
0.229 |
|
|
|
92 |
Inviscid Burgers |
✓ |
0.027 |
✓ |
0.019 |
Yes |
|
|
93 |
Inviscid Burgers with I.C. |
✓ |
0.008 |
✓ |
0.047 |
Yes |
|
|
94 |
|
✓ |
0.026 |
✓ |
0.064 |
|
|
|
95 |
|
✓ |
21.53 |
✗ |
0.655 |
|
|
|
96 |
|
✓ |
24.232 |
✗ |
0.788 |
|
|
|
97 |
classic Black Scholes model from finance, European call version |
✓ |
3.046 |
✓ |
0.931 |
|
|
|
98 |
Boundary value problem for the Black Scholes equation |
✓ |
2.766 |
✓ |
2.334 |
|
|
|
99 |
|
✓ |
0.029 |
✓ |
0.177 |
|
|
|
100 |
|
✓ |
4.196 |
✓ |
3.212 |
|
|
|
101 |
|
✗ |
0.005 |
✓ |
1.635 |
|
|
|
102 |
|
✗ |
0.004 |
✓ |
1.7 |
|
|
|
103 |
|
✗ |
0.007 |
✓ |
0.082 |
|
|
|
104 |
|
✗ |
0.006 |
✓ |
0.26 |
|
|
|
105 |
|
✗ |
1.963 |
✓ |
3.855 |
|
|
|
106 |
|
✗ |
0.021 |
✓ |
0.889 |
|
|
|
107 |
Cauchy Riemann PDE with Prescribe
the values of |
✓ |
0.005 |
✓ |
0.13 |
|
|
|
108 |
Cauchy Riemann PDE With extra term on right side |
✗ |
0.001 |
✓ |
0.052 |
|
|
|
109 |
Hamilton-Jacobi type PDE |
✗ |
0.007 |
✓ |
0.157 |
|
|
|
110 |
|
✗ |
0.002 |
✓ |
0.064 |
Yes |
|
|
111 |
Bateman-Burgers |
✓ |
0.02 |
✓ |
0.06 |
|
|
|
112 |
Benjamin Bona Mahony |
✓ |
0.031 |
✓ |
0.075 |
|
|
|
113 |
Benjamin Ono |
✓ |
0.02 |
✓ |
0.062 |
|
|
|
114 |
Born Infeld |
✓ |
0.008 |
✓ |
0.135 |
|
|
|
115 |
Boussinesq |
✓ |
0.042 |
✓ |
0.086 |
|
|
|
116 |
Boussinesq type |
✓ |
0.041 |
✓ |
0.106 |
|
|
|
117 |
Buckmaster |
✗ |
0.07 |
✓ |
0.352 |
|
|
|
118 |
Camassa Holm |
✗ |
0.174 |
✓ |
1.52 |
|
|
|
119 |
Chaffee Infante |
✗ |
0.093 |
✓ |
0.176 |
|
|
|
120 |
Clarke. |
✗ |
0.01 |
✗ |
0.025 |
|
|
|
121 |
Degasperis Procesi |
✗ |
0.169 |
✓ |
0.52 |
|
|
|
122 |
Dym equation |
✗ |
0.083 |
✓ |
0.375 |
|
|
|
123 |
Estevez Mansfield Clarkson |
✓ |
0.033 |
✓ |
0.121 |
|
|
|
124 |
Fisher’s |
✓ |
0.05 |
✓ |
0.165 |
|
|
|
125 |
Hunter Saxton |
✗ |
0.044 |
✓ |
0.107 |
|
|
|
126 |
Kadomtsev Petviashvili |
✓ |
0.071 |
✓ |
0.125 |
|
|
|
127 |
Klein Gordon |
✗ |
0.004 |
✗ |
0.017 |
|
|
|
128 |
Klein Gordon |
✗ |
0.228 |
✓ |
0.346 |
|
|
|
129 |
Khokhlov Zabolotskaya |
✗ |
0.057 |
✓ |
0.237 |
|
|
|
130 |
Korteweg de Vries (KdV) |
✓ |
0.029 |
✓ |
0.092 |
|
|
|
131 |
Lin Tsien |
✗ |
0.072 |
✓ |
0.243 |
|
|
|
132 |
Liouville |
✗ |
0.004 |
✗ |
0.017 |
|
|
|
133 |
Plateau |
✗ |
0.032 |
✓ |
0.156 |
|
|
|
134 |
Rayleigh |
✗ |
0.078 |
✓ |
0.127 |
|
|
|
135 |
Sawada Kotera |
✓ |
0.085 |
✓ |
0.187 |
|
|
|
136 |
Sine Gordon |
✗ |
0.007 |
✗ |
0.013 |
|
|
|
137 |
Sinh Gordon |
✗ |
0.007 |
✗ |
0.014 |
|
|
|
138 |
Sinh Poisson |
✗ |
0.006 |
✗ |
0.011 |
|
|
|
139 |
Thomas equation |
✗ |
0.06 |
✓ |
0.339 |
|
|
|
140 |
phi equation |
✓ |
0.043 |
✓ |
0.472 |
|
|
|
141 |
|
✗ |
0.031 |
✓ |
0.023 |
|
|
|
142 |
|
✗ |
0.012 |
✓ |
0.513 |
|
|
|
143 |
|
✓ |
3.551 |
✓ |
2.448 |
|
|
|
144 |
|
✗ |
0.413 |
✓ |
5.663 |
|
|
|
145 |
|
✗ |
0.271 |
✓ |
0.426 |
|
|
|
146 |
|
✗ |
0.003 |
✓ |
0.621 |
|
|
|
147 |
Linear PDE, initial conditions at |
✗ |
0.003 |
✓ |
0.616 |
|
|
|
148 |
second order in time, Linear PDE,
initial conditions at |
✗ |
0.003 |
✓ |
2.179 |
|
|
|
149 |
Einstein-Weiner |
✗ |
0.004 |
✓ |
0.194 |
|
|
|
150 |
Using integral transforms. |
✗ |
0.982 |
✓ |
2.129 |
|
|
|
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|