# |
ODE |
CAS classification |
Solved? |
time (sec) |
\[
{}\left [\begin {array}{c} t^{2} \left (1-\sin \left (t \right )\right ) x^{\prime }=t \left (1-2 \sin \left (t \right )\right ) x+t^{2} y \\ t^{2} \left (1-\sin \left (t \right )\right ) y^{\prime }=\left (t \cos \left (t \right )-\sin \left (t \right )\right ) x+t \left (1-t \cos \left (t \right )\right ) y \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.068 |
|
\[
{}\left [\begin {array}{c} x^{\prime }+y^{\prime }+y=f \left (t \right ) \\ x^{\prime \prime }+y^{\prime \prime }+y^{\prime }+x+y=g \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.020 |
|
\[
{}\left [\begin {array}{c} 2 x^{\prime }+y^{\prime }-3 x=0 \\ x^{\prime \prime }+y^{\prime }-2 y={\mathrm e}^{2 t} \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.045 |
|
\[
{}\left [\begin {array}{c} x^{\prime }-y^{\prime }+x=2 t \\ x^{\prime \prime }+y^{\prime }-9 x+3 y=\sin \left (2 t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.046 |
|
\[
{}\left [\begin {array}{c} x^{\prime }-x+2 y=0 \\ x^{\prime \prime }-2 y^{\prime }=2 t -\cos \left (2 t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.045 |
|
\[
{}\left [\begin {array}{c} t x^{\prime }-t y^{\prime }-2 y=0 \\ t x^{\prime \prime }+2 x^{\prime }+x t =0 \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.046 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }+a y=0 \\ y^{\prime \prime }-a^{2} y=0 \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.042 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }=a x+b y \\ y^{\prime \prime }=c x+d y \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.043 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }=a_{1} x+b_{1} y+c_{1} \\ y^{\prime \prime }=a_{2} x+b_{2} y+c_{2} \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.046 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }+x+y=-5 \\ y^{\prime \prime }-4 x-3 y=-3 \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.043 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }=\left (3 \cos \left (a t +b \right )^{2}-1\right ) c^{2} x+\frac {3 c^{2} y \sin \left (2 a t b \right )}{2} \\ y^{\prime \prime }=\left (3 \sin \left (a t +b \right )^{2}-1\right ) c^{2} y+\frac {3 c^{2} x \sin \left (2 a t b \right )}{2} \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.050 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }+6 x+7 y=0 \\ y^{\prime \prime }+3 x+2 y=2 t \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.043 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }-a y^{\prime }+b x=0 \\ y^{\prime \prime }+a x^{\prime }+b y=0 \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.043 |
|
\[
{}\left [\begin {array}{c} a_{1} x^{\prime \prime }+b_{1} x^{\prime }+c_{1} x-A y^{\prime }=B \,{\mathrm e}^{i \omega t} \\ a_{2} y^{\prime \prime }+b_{2} y^{\prime }+c_{2} y+A x^{\prime }=0 \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.052 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }+a \left (x^{\prime }-y^{\prime }\right )+b_{1} x=c_{1} {\mathrm e}^{i \omega t} \\ y^{\prime \prime }+a \left (y^{\prime }-x^{\prime }\right )+b_{2} y=c_{2} {\mathrm e}^{i \omega t} \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.050 |
|
\[
{}\left [\begin {array}{c} \operatorname {a11} x^{\prime \prime }+\operatorname {b11} x^{\prime }+\operatorname {c11} x+\operatorname {a12} y^{\prime \prime }+\operatorname {b12} y^{\prime }+\operatorname {c12} y=0 \\ \operatorname {a21} x^{\prime \prime }+\operatorname {b21} x^{\prime }+\operatorname {c21} x+\operatorname {a22} y^{\prime \prime }+\operatorname {b22} y^{\prime }+\operatorname {c22} y=0 \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.050 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }-2 x^{\prime }-y^{\prime }+y=0 \\ y^{\prime \prime \prime }-y^{\prime \prime }+2 x^{\prime }-x=t \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.048 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }+y^{\prime \prime }+y^{\prime }=\sinh \left (2 t \right ) \\ 2 x^{\prime \prime }+y^{\prime \prime }=2 t \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.049 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }-x^{\prime }+y^{\prime }=0 \\ x^{\prime \prime }+y^{\prime \prime }-x=0 \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.046 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=3 x-2 y \\ z^{\prime }=2 y+3 z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.432 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=4 x \\ y^{\prime }=x-2 y \\ z^{\prime }=x-4 y+z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.458 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y-z \\ y^{\prime }=x+y \\ z^{\prime }=x+z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.327 |
|
\[
{}\left [\begin {array}{c} x^{\prime }-y+z=0 \\ y^{\prime }-x-y=t \\ z^{\prime }-x-z=t \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.526 |
|
\[
{}\left [\begin {array}{c} a x^{\prime }=b c \left (y-z\right ) \\ b y^{\prime }=c a \left (z-x\right ) \\ c z^{\prime }=a b \left (x-y\right ) \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.394 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=c y-b z \\ y^{\prime }=a z-c x \\ z^{\prime }=b x-a y \end {array}\right ]
\] |
system_of_ODEs |
✓ |
1.227 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=h \left (t \right ) y-g \left (t \right ) z \\ y^{\prime }=f \left (t \right ) z-h \left (t \right ) x \\ z^{\prime }=x g \left (t \right )-y f \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.053 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y-z \\ y^{\prime }=y+z-x \\ z^{\prime }=x-y+z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.688 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-3 x+48 y-28 z \\ y^{\prime }=-4 x+40 y-22 z \\ z^{\prime }=-6 x+57 y-31 z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
0.475 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=6 x-72 y+44 z \\ y^{\prime }=4 x-4 y+26 z \\ z^{\prime }=6 x-63 y+38 z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
10.169 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=a x+g y+\beta z \\ y^{\prime }=g x+b y+\alpha z \\ z^{\prime }=\beta x+\alpha y+c z \end {array}\right ]
\] |
system_of_ODEs |
✓ |
159.264 |
|
\[
{}\left [\begin {array}{c} t x^{\prime }=2 x-t \\ t^{3} y^{\prime }=-x+t^{2} y+t \\ t^{4} z^{\prime }=-x-t^{2} y+t^{3} z+t \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.055 |
|
\[
{}\left [\begin {array}{c} a t x^{\prime }=b c \left (y-z\right ) \\ b t y^{\prime }=c a \left (z-x\right ) \\ c t z^{\prime }=a b \left (x-y\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.056 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime }=a x_{2}+b x_{3} \cos \left (c t \right )+b x_{4} \sin \left (c t \right ) \\ x_{2}^{\prime }=-a x_{1}+b x_{3} \sin \left (c t \right )-b x_{4} \cos \left (c t \right ) \\ x_{3}^{\prime }=-b x_{1} \cos \left (c t \right )-b x_{2} \sin \left (c t \right )+a x_{4} \\ x_{4}^{\prime }=-b x_{1} \sin \left (c t \right )+b x_{2} \cos \left (c t \right )-a x_{3} \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.062 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x \left (x+y\right ) \\ y^{\prime }=y \left (x+y\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.046 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\left (a y+b \right ) x \\ y^{\prime }=\left (c x+d \right ) y \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.046 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x \left (a \left (p x+q y\right )+\alpha \right ) \\ y^{\prime }=y \left (\beta +b \left (p x+q y\right )\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.048 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=h \left (a -x\right ) \left (c -x-y\right ) \\ y^{\prime }=k \left (b -y\right ) \left (c -x-y\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.048 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y^{2}-\cos \left (x\right ) \\ y^{\prime }=-y \sin \left (x\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.050 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x \,y^{2}+x+y \\ y^{\prime }=x^{2} y-x-y \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.046 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x+y-x \left (x^{2}+y^{2}\right ) \\ y^{\prime }=-x+y-y \left (x^{2}+y^{2}\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.047 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-y+x \left (x^{2}+y^{2}-1\right ) \\ y^{\prime }=x+y \left (x^{2}+y^{2}-1\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.046 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-y \left (x^{2}+y^{2}\right ) \\ y^{\prime }=\left \{\begin {array}{cc} x^{2}+y^{2} & 2 x\le x^{2}+y^{2} \\ \left (\frac {x}{2}-\frac {y^{2}}{2 x}\right ) \left (x^{2}+y^{2}\right ) & \operatorname {otherwise} \end {array}\right . \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.053 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-y+\left (\left \{\begin {array}{cc} x \left (x^{2}+y^{2}-1\right ) \sin \left (\frac {1}{x^{2}+y^{2}}\right ) & x^{2}+y^{2}\neq 1 \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \\ y^{\prime }=x+\left (\left \{\begin {array}{cc} y \left (x^{2}+y^{2}-1\right ) \sin \left (\frac {1}{x^{2}+y^{2}}\right ) & x^{2}+y^{2}\neq 1 \\ 0 & \operatorname {otherwise} \end {array}\right .\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.054 |
|
\[
{}\left [\begin {array}{c} \left (t^{2}+1\right ) x^{\prime }=-x t +y \\ \left (t^{2}+1\right ) y^{\prime }=-x-t y \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.050 |
|
\[
{}\left [\begin {array}{c} \left (x^{2}+y^{2}-t^{2}\right ) x^{\prime }=-2 x t \\ \left (x^{2}+y^{2}-t^{2}\right ) y^{\prime }=-2 t y \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.053 |
|
\[
{}\left [\begin {array}{c} {x^{\prime }}^{2}+t x^{\prime }+a y^{\prime }-x=0 \\ x^{\prime } y^{\prime }+t y^{\prime }-y=0 \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.069 |
|
\[
{}\left [\begin {array}{c} x=t x^{\prime }+f \left (x^{\prime }, y^{\prime }\right ) \\ y=t y^{\prime }+g \left (x^{\prime }, y^{\prime }\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.063 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }=a \,{\mathrm e}^{2 x}-{\mathrm e}^{-x}+{\mathrm e}^{-2 x} \cos \left (y\right )^{2} \\ y^{\prime \prime }={\mathrm e}^{-2 x} \sin \left (y\right ) \cos \left (y\right )-\frac {\sin \left (y\right )}{\cos \left (y\right )^{3}} \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.052 |
|
\[
{}\left [\begin {array}{c} x^{\prime \prime }=\frac {k x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} \\ y^{\prime \prime }=\frac {k y}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.047 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=y-z \\ y^{\prime }=x^{2}+y \\ z^{\prime }=x^{2}+z \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.050 |
|
\[
{}\left [\begin {array}{c} a x^{\prime }=\left (b -c \right ) y z \\ b y^{\prime }=\left (c -a \right ) z x \\ c z^{\prime }=\left (a -b \right ) x y \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.055 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x \left (y-z\right ) \\ y^{\prime }=y \left (z-x\right ) \\ z^{\prime }=z \left (x-y\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.049 |
|
\[
{}\left [\begin {array}{c} x^{\prime }+y^{\prime }=x y \\ y^{\prime }+z^{\prime }=y z \\ x^{\prime }+z^{\prime }=x z \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.055 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=\frac {x^{2}}{2}-\frac {y}{24} \\ y^{\prime }=2 x y-3 z \\ z^{\prime }=3 x z-\frac {y^{2}}{6} \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.050 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x \left (y^{2}-z^{2}\right ) \\ y^{\prime }=y \left (z^{2}-x^{2}\right ) \\ z^{\prime }=z \left (x^{2}-y^{2}\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.050 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=x \left (y^{2}-z^{2}\right ) \\ y^{\prime }=-y \left (z^{2}+x^{2}\right ) \\ z^{\prime }=z \left (x^{2}+y^{2}\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.052 |
|
\[
{}\left [\begin {array}{c} x^{\prime }=-x \,y^{2}+x+y \\ y^{\prime }=x^{2} y-x-y \\ z^{\prime }=y^{2}-x^{2} \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.050 |
|
\[
{}\left [\begin {array}{c} \left (x-y\right ) \left (x-z\right ) x^{\prime }=f \left (t \right ) \\ \left (-x+y\right ) \left (y-z\right ) y^{\prime }=f \left (t \right ) \\ \left (z-x\right ) \left (z-y\right ) z^{\prime }=f \left (t \right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.060 |
|
\[
{}\left [\begin {array}{c} x_{1}^{\prime } \sin \left (x_{2}\right )=x_{4} \sin \left (x_{3}\right )+x_{5} \cos \left (x_{3}\right ) \\ x_{2}^{\prime }=x_{4} \cos \left (x_{3}\right )-x_{5} \sin \left (x_{3}\right ) \\ x_{3}^{\prime }+x_{1}^{\prime } \cos \left (x_{2}\right )=a \\ x_{4}^{\prime }-\left (1-\lambda \right ) a x_{5}=-m \sin \left (x_{2}\right ) \cos \left (x_{3}\right ) \\ x_{5}^{\prime }+\left (1-\lambda \right ) a x_{4}=m \sin \left (x_{2}\right ) \sin \left (x_{3}\right ) \end {array}\right ]
\] |
system_of_ODEs |
✗ |
0.070 |
|
\(\left [\begin {array}{cc} 4 & -2 \\ 1 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.148 |
|
\(\left [\begin {array}{cc} 5 & -6 \\ 3 & -4 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.139 |
|
\(\left [\begin {array}{cc} 8 & -6 \\ 3 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.139 |
|
\(\left [\begin {array}{cc} 4 & -3 \\ 2 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.137 |
|
\(\left [\begin {array}{cc} 10 & -9 \\ 6 & -5 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.140 |
|
\(\left [\begin {array}{cc} 6 & -4 \\ 3 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.139 |
|
\(\left [\begin {array}{cc} 10 & -8 \\ 6 & -4 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.140 |
|
\(\left [\begin {array}{cc} 7 & -6 \\ 12 & -10 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.147 |
|
\(\left [\begin {array}{cc} 8 & -10 \\ 2 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.141 |
|
\(\left [\begin {array}{cc} 9 & -10 \\ 2 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.141 |
|
\(\left [\begin {array}{cc} 19 & -10 \\ 21 & -10 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.141 |
|
\(\left [\begin {array}{cc} 13 & -15 \\ 6 & -6 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.143 |
|
\(\left [\begin {array}{ccc} 2 & 0 & 0 \\ 2 & -2 & -1 \\ -2 & 6 & 3 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.237 |
|
\(\left [\begin {array}{ccc} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.241 |
|
\(\left [\begin {array}{ccc} 2 & -2 & 0 \\ 2 & -2 & -1 \\ -2 & 2 & 3 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.230 |
|
\(\left [\begin {array}{ccc} 1 & 0 & -1 \\ -2 & 3 & -1 \\ -6 & 6 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.227 |
|
\(\left [\begin {array}{ccc} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.217 |
|
\(\left [\begin {array}{ccc} 1 & 0 & 0 \\ -6 & 8 & 2 \\ 12 & -15 & -3 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.239 |
|
\(\left [\begin {array}{ccc} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.166 |
|
\(\left [\begin {array}{ccc} 1 & 0 & 0 \\ -4 & 7 & 2 \\ 10 & -15 & -4 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.188 |
|
\(\left [\begin {array}{ccc} 4 & -3 & 1 \\ 2 & -1 & 1 \\ 0 & 0 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.177 |
|
\(\left [\begin {array}{ccc} 5 & -6 & 3 \\ 6 & -7 & 3 \\ 6 & -6 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.181 |
|
\(\left [\begin {array}{cccc} 1 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 4 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.301 |
|
\(\left [\begin {array}{cccc} 1 & 0 & 4 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.199 |
|
\(\left [\begin {array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.202 |
|
\(\left [\begin {array}{cccc} 4 & 0 & 0 & -3 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 6 & 0 & 0 & -5 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.320 |
|
\(\left [\begin {array}{cc} 0 & 1 \\ -1 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.163 |
|
\(\left [\begin {array}{cc} 0 & -6 \\ 6 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.176 |
|
\(\left [\begin {array}{cc} 0 & -3 \\ 12 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.178 |
|
\(\left [\begin {array}{cc} 0 & -12 \\ 12 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.171 |
|
\(\left [\begin {array}{cc} 0 & 24 \\ -6 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.173 |
|
\(\left [\begin {array}{cc} 0 & -4 \\ 36 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.177 |
|
\(\left [\begin {array}{ccc} 32 & -67 & 47 \\ 7 & -14 & 13 \\ -7 & 15 & -6 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.248 |
|
\(\left [\begin {array}{cccc} 22 & -9 & -8 & -8 \\ 10 & -7 & -14 & 2 \\ 10 & 0 & 8 & -10 \\ 29 & -9 & -3 & -15 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.470 |
|
\(\left [\begin {array}{cc} 5 & -4 \\ 2 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.135 |
|
\(\left [\begin {array}{cc} 6 & -6 \\ 4 & -4 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.143 |
|
\(\left [\begin {array}{cc} 5 & -3 \\ 2 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.137 |
|
\(\left [\begin {array}{cc} 5 & -4 \\ 3 & -2 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.138 |
|
\(\left [\begin {array}{cc} 9 & -8 \\ 6 & -5 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.137 |
|
\(\left [\begin {array}{cc} 10 & -6 \\ 12 & -7 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.142 |
|
\(\left [\begin {array}{cc} 6 & -10 \\ 2 & -3 \end {array}\right ]\) |
Eigenvectors |
✓ |
0.140 |
|