2.2.139 Problems 13801 to 13900

Table 2.279: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13801

2x+2y1+(x+y2)y=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.873

13802

y3e2xy=0

[_quadrature]

0.505

13803

y=5yxy2

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.592

13804

y=xy2
i.c.

[[_Riccati, _special]]

19.311

13805

y=(x5y)1/3+2

[[_homogeneous, ‘class C‘], _dAlembert]

1.825

13806

y(xy)x2y=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.741

13807

x+5x=10t+2
i.c.

[[_linear, ‘class A‘]]

2.845

13808

x=xt+x2t3
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.842

13809

y=yx+y2
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.536

13810

y=yx+y2
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.562

13811

y=3x4y23x4y3

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.030

13812

xxcot(t)=4sin(t)

[_linear]

1.850

13813

y=x2+2yx+y22

[[_homogeneous, ‘class G‘]]

1.710

13814

y3yx+x3y2=0

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.930

13815

y(1+y2)=a

[_quadrature]

0.555

13816

x2y+(x2y2+x)y=0

[_rational]

1.279

13817

3y2x+2y(y23x)y=0

[[_homogeneous, ‘class G‘], _rational]

4.699

13818

y(xy)x2y=0

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

1.691

13819

y=x+y3yx+1

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.090

13820

yxy2ln(x)+y=0

[_Bernoulli]

2.164

13821

(x21)y+2xycos(x)=0

[_linear]

2.565

13822

(3+2x+4y)y2yx1=0

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.958

13823

(x+y2)yy+x2=0

[_exact, _rational]

1.129

13824

(y2x2)y+2xy=0

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.753

13825

3xy2y+y32x=0

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.444

13826

y2+(x+a)yy=0

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.580

13827

y22yx+y=0

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.519

13828

y2+2yycot(x)y2=0

[_separable]

1.355

13829

y6y+10y=100
i.c.

[[_2nd_order, _missing_x]]

0.747

13830

x+x=sin(t)cos(2t)

[[_2nd_order, _linear, _nonhomogeneous]]

1.051

13831

y+y3y=0

[[_3rd_order, _missing_x]]

0.082

13832

y+y=1sin(x)3

[[_2nd_order, _linear, _nonhomogeneous]]

0.825

13833

x2y4yx+6y=2

[[_2nd_order, _with_linear_symmetries]]

1.251

13834

y+y=cosh(x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.764

13835

y+2y21y=0

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.407

13836

x4x+4x=et+e2t+1

[[_2nd_order, _linear, _nonhomogeneous]]

0.647

13837

(x2+1)y+1+y2=0

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

0.879

13838

x3x+1=0

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

2.089

13839

y16y=x2ex

[[_high_order, _linear, _nonhomogeneous]]

0.183

13840

y2+y2=1

[[_3rd_order, _missing_x], [_3rd_order, _missing_y], [_3rd_order, _with_linear_symmetries], [_3rd_order, _reducible, _mu_y2]]

2.964

13841

x(6)x=1

[[_high_order, _missing_x]]

0.141

13842

x2x+x=t23

[[_high_order, _with_linear_symmetries]]

0.143

13843

y+4xy=0

[[_Emden, _Fowler]]

0.290

13844

x2y+yx+(9x2125)y=0

[[_2nd_order, _with_linear_symmetries]]

0.517

13845

y+y2=1
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.618

13846

y=3y
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

4.458

13847

y+y=11sin(x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.769

13848

u+2ur=0

[[_2nd_order, _missing_y]]

0.520

13849

yy+y2=yyx2+1

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.584

13850

yyy=y3+y2

[[_2nd_order, _missing_x]]

1.799

13851

x+9x=tsin(3t)

[[_2nd_order, _linear, _nonhomogeneous]]

0.862

13852

y+2y+y=sinh(x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.757

13853

yy=ex

[[_3rd_order, _with_linear_symmetries]]

0.145

13854

y2y+2y=xexcos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

0.698

13855

(x21)y6y=1

[[_2nd_order, _with_linear_symmetries]]

0.521

13856

mx=f(x)

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.127

13857

mx=f(x)

[[_2nd_order, _missing_x]]

0.762

13858

y(6)3y(5)+3yy=x

[[_high_order, _missing_y]]

0.157

13859

x+2x+x=cos(t)

[[_high_order, _linear, _nonhomogeneous]]

0.853

13860

(x+1)2y+(x+1)y+y=2cos(ln(x+1))

[[_2nd_order, _linear, _nonhomogeneous]]

1.733

13861

x3yyx+y=0

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.159

13862

x+x=t3

[[_high_order, _linear, _nonhomogeneous]]

0.151

13863

y3+y+1=x

[[_2nd_order, _quadrature]]

1.408

13864

x+10x+25x=2t+te5t

[[_2nd_order, _linear, _nonhomogeneous]]

0.851

13865

xyyxy2yy=0

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.390

13866

y(6)y=e2x

[[_high_order, _with_linear_symmetries]]

0.203

13867

y(6)+2y+y=x+ex

[[_high_order, _missing_y]]

0.188

13868

6yy5y2=0

[[_high_order, _missing_x], [_high_order, _missing_y], [_high_order, _with_linear_symmetries], [_high_order, _reducible, _mu_poly_yn]]

0.804

13869

xy=yln(yx)

[[_2nd_order, _missing_y]]

0.721

13870

y+y=sin(3x)cos(x)

[[_2nd_order, _linear, _nonhomogeneous]]

1.200

13871

y=2y3
i.c.

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.839

13872

yyy2=y

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.506

13873

[x=yy=x]
i.c.

system_of_ODEs

0.392

13874

[x+5x+y=etyx3y=e2t]

system_of_ODEs

1.688

13875

[x=yy=zz=x]

system_of_ODEs

1.059

13876

[x=yy=y2x]

system_of_ODEs

0.057

13877

y=yex+y(x2+1)

[_separable]

1.641

13878

x2y=1+y2

[_separable]

1.979

13879

y=sin(xy)

[‘y=_G(x,y’)‘]

1.463

13880

x(ey+4)=ex+yy

[_separable]

2.453

13881

y=cos(x+y)

[[_homogeneous, ‘class C‘], _dAlembert]

1.979

13882

yx+y=xy2

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.197

13883

y=tln(y2t)+t2

[‘y=_G(x,y’)‘]

1.900

13884

y=xex+y2

[_separable]

1.409

13885

y=ln(xy)

[‘y=_G(x,y’)‘]

0.816

13886

x(1+y)2=(x2+1)yeyy

[_separable]

2.352

13887

y+x2y=0

[[_Emden, _Fowler]]

0.440

13888

y+xy=sin(x)

[[_3rd_order, _linear, _nonhomogeneous]]

0.102

13889

y+yy=1

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

5.984

13890

y(5)y+y=2x2+3

[[_high_order, _missing_y]]

0.177

13891

y+yy=1

[[_high_order, _missing_x], [_high_order, _with_linear_symmetries]]

0.070

13892

y+xy=cosh(x)

[[_3rd_order, _linear, _nonhomogeneous]]

0.089

13893

cos(x)y+yex2=sinh(x)

[_linear]

39.522

13894

y+xy=cosh(x)

[[_3rd_order, _linear, _nonhomogeneous]]

0.079

13895

yy=1

[_quadrature]

1.009

13896

sinh(x)y2+3y=0

[‘y=_G(x,y’)‘]

1.598

13897

5yxy=0

[_separable]

1.118

13898

y2y=sin(x)

[[_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

2.564

13899

2y+3y+4x2y=1

[[_2nd_order, _linear, _nonhomogeneous]]

0.843

13900

y=1

[[_3rd_order, _quadrature]]

0.112