| # |
ODE |
CAS classification |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| \begin{align*}
x^{\prime \prime }-x^{\prime }+y^{\prime }&=0 \\
x^{\prime \prime }+y^{\prime \prime }-x&=0 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.027 |
|
| \begin{align*}
x^{\prime }&=2 x \\
y^{\prime }&=3 x-2 y \\
z^{\prime }&=2 y+3 z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.513 |
|
| \begin{align*}
x^{\prime }&=4 x \\
y^{\prime }&=x-2 y \\
z^{\prime }&=x-4 y+z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.510 |
|
| \begin{align*}
x^{\prime }&=y-z \\
y^{\prime }&=x+y \\
z^{\prime }&=x+z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.427 |
|
| \begin{align*}
x^{\prime }-y+z&=0 \\
-x+y^{\prime }-y&=t \\
z^{\prime }-x-z&=t \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.630 |
|
| \begin{align*}
a x^{\prime }&=b c \left (y-z\right ) \\
b y^{\prime }&=c a \left (z-x\right ) \\
c z^{\prime }&=a b \left (x-y\right ) \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.528 |
|
| \begin{align*}
x^{\prime }&=c y-b z \\
y^{\prime }&=a z-c x \\
z^{\prime }&=b x-a y \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
1.253 |
|
| \begin{align*}
x^{\prime }&=x+y-z \\
y^{\prime }&=y+z-x \\
z^{\prime }&=x-y+z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.740 |
|
| \begin{align*}
x^{\prime }&=-3 x+48 y-28 z \\
y^{\prime }&=-4 x+40 y-22 z \\
z^{\prime }&=-6 x+57 y-31 z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✓ |
0.615 |
|
| \begin{align*}
x^{\prime }&=6 x-72 y+44 z \\
y^{\prime }&=4 x-4 y+26 z \\
z^{\prime }&=6 x-63 y+38 z \\
\end{align*} |
system_of_ODEs |
✓ |
✓ |
✓ |
✗ |
12.652 |
|
| \begin{align*}
x^{\prime }&=a x+g y+\beta z \\
y^{\prime }&=g x+b y+\alpha z \\
z^{\prime }&=\beta x+\alpha y+c z \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
165.232 |
|
| \begin{align*}
t x^{\prime }&=2 x-t \\
t^{3} y^{\prime }&=-x+t^{2} y+t \\
t^{4} z^{\prime }&=-x-t^{2} y+t^{3} z+t \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.042 |
|
| \begin{align*}
a t x^{\prime }&=b c \left (y-z\right ) \\
b t y^{\prime }&=c a \left (z-x\right ) \\
c t z^{\prime }&=a b \left (x-y\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.040 |
|
| \begin{align*}
x_{1}^{\prime }&=a x_{2}+b x_{3} \cos \left (c t \right )+b x_{4} \sin \left (c t \right ) \\
x_{2}^{\prime }&=-a x_{1}+b x_{3} \sin \left (c t \right )-b x_{4} \cos \left (c t \right ) \\
x_{3}^{\prime }&=-b x_{1} \cos \left (c t \right )-b x_{2} \sin \left (c t \right )+a x_{4} \\
x_{4}^{\prime }&=-b x_{1} \sin \left (c t \right )+b x_{2} \cos \left (c t \right )-a x_{3} \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.063 |
|
| \begin{align*}
x^{\prime }&=-x \left (x+y\right ) \\
y^{\prime }&=y \left (x+y\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.024 |
|
| \begin{align*}
x^{\prime }&=\left (a y+b \right ) x \\
y^{\prime }&=\left (c x+d \right ) y \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.025 |
|
| \begin{align*}
x^{\prime }&=x \left (a \left (p x+q y\right )+\alpha \right ) \\
y^{\prime }&=y \left (\beta +b \left (p x+q y\right )\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.028 |
|
| \begin{align*}
x^{\prime }&=h \left (a -x\right ) \left (c -x-y\right ) \\
y^{\prime }&=k \left (b -y\right ) \left (c -x-y\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.028 |
|
| \begin{align*}
x^{\prime }&=y^{2}-\cos \left (x\right ) \\
y^{\prime }&=-y \sin \left (x\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.025 |
|
| \begin{align*}
x^{\prime }&=-x \,y^{2}+x+y \\
y^{\prime }&=y \,x^{2}-x-y \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.027 |
|
| \begin{align*}
x^{\prime }&=x+y-x \left (x^{2}+y^{2}\right ) \\
y^{\prime }&=-x+y-y \left (x^{2}+y^{2}\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.029 |
|
| \begin{align*}
x^{\prime }&=-y+x \left (x^{2}+y^{2}-1\right ) \\
y^{\prime }&=x+y \left (x^{2}+y^{2}-1\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.028 |
|
| \begin{align*}
\left (t^{2}+1\right ) x^{\prime }&=-t x+y \\
\left (t^{2}+1\right ) y^{\prime }&=-x-t y \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.029 |
|
| \begin{align*}
\left (x^{2}+y^{2}-t^{2}\right ) x^{\prime }&=-2 t x \\
\left (x^{2}+y^{2}-t^{2}\right ) y^{\prime }&=-2 t y \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.033 |
|
| \begin{align*}
{x^{\prime }}^{2}+t x^{\prime }+a y^{\prime }-x&=0 \\
x^{\prime } y^{\prime }+y^{\prime } t -y&=0 \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.040 |
|
| \begin{align*}
x&=t x^{\prime }+f \left (x^{\prime }, y^{\prime }\right ) \\
y&=y^{\prime } t +g \left (x^{\prime }, y^{\prime }\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✓ |
0.047 |
|
| \begin{align*}
x^{\prime \prime }&=a \,{\mathrm e}^{2 x}-{\mathrm e}^{-x}+{\mathrm e}^{-2 x} \cos \left (y\right )^{2} \\
y^{\prime \prime }&={\mathrm e}^{-2 x} \sin \left (y\right ) \cos \left (y\right )-\frac {\sin \left (y\right )}{\cos \left (y\right )^{3}} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.033 |
|
| \begin{align*}
x^{\prime \prime }&=\frac {k x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} \\
y^{\prime \prime }&=\frac {k y}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.023 |
|
| \begin{align*}
x^{\prime }&=y-z \\
y^{\prime }&=x^{2}+y \\
z^{\prime }&=x^{2}+z \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.028 |
|
| \begin{align*}
a x^{\prime }&=\left (b -c \right ) y z \\
b y^{\prime }&=\left (c -a \right ) z x \\
c z^{\prime }&=\left (a -b \right ) x y \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.039 |
|
| \begin{align*}
x^{\prime }&=x \left (y-z\right ) \\
y^{\prime }&=y \left (z-x\right ) \\
z^{\prime }&=z \left (x-y\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.031 |
|
| \begin{align*}
x^{\prime }+y^{\prime }&=x y \\
y^{\prime }+z^{\prime }&=y z \\
x^{\prime }+z^{\prime }&=x z \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✗ |
✗ |
0.041 |
|
| \begin{align*}
x^{\prime }&=\frac {x^{2}}{2}-\frac {y}{24} \\
y^{\prime }&=2 x y-3 z \\
z^{\prime }&=3 x z-\frac {y^{2}}{6} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.032 |
|
| \begin{align*}
x^{\prime }&=x \left (y^{2}-z^{2}\right ) \\
y^{\prime }&=y \left (z^{2}-x^{2}\right ) \\
z^{\prime }&=z \left (x^{2}-y^{2}\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.031 |
|
| \begin{align*}
x^{\prime }&=x \left (y^{2}-z^{2}\right ) \\
y^{\prime }&=-y \left (z^{2}+x^{2}\right ) \\
z^{\prime }&=z \left (x^{2}+y^{2}\right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✗ |
✗ |
0.036 |
|
| \begin{align*}
x^{\prime }&=-x \,y^{2}+x+y \\
y^{\prime }&=y \,x^{2}-x-y \\
z^{\prime }&=y^{2}-x^{2} \\
\end{align*} |
system_of_ODEs |
✗ |
✗ |
✗ |
✗ |
0.031 |
|
| \begin{align*}
\left (x-y\right ) \left (x-z\right ) x^{\prime }&=f \left (t \right ) \\
\left (-x+y\right ) \left (y-z\right ) y^{\prime }&=f \left (t \right ) \\
\left (z-x\right ) \left (z-y\right ) z^{\prime }&=f \left (t \right ) \\
\end{align*} |
system_of_ODEs |
✗ |
✓ |
✓ |
✗ |
0.041 |
|
| \(\left [\begin {array}{cc} 4 & -2 \\ 1 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.184 |
|
| \(\left [\begin {array}{cc} 5 & -6 \\ 3 & -4 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.184 |
|
| \(\left [\begin {array}{cc} 8 & -6 \\ 3 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.185 |
|
| \(\left [\begin {array}{cc} 4 & -3 \\ 2 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.194 |
|
| \(\left [\begin {array}{cc} 10 & -9 \\ 6 & -5 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.207 |
|
| \(\left [\begin {array}{cc} 6 & -4 \\ 3 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.205 |
|
| \(\left [\begin {array}{cc} 10 & -8 \\ 6 & -4 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.191 |
|
| \(\left [\begin {array}{cc} 7 & -6 \\ 12 & -10 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.200 |
|
| \(\left [\begin {array}{cc} 8 & -10 \\ 2 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.188 |
|
| \(\left [\begin {array}{cc} 9 & -10 \\ 2 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.194 |
|
| \(\left [\begin {array}{cc} 19 & -10 \\ 21 & -10 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.210 |
|
| \(\left [\begin {array}{cc} 13 & -15 \\ 6 & -6 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.202 |
|
| \(\left [\begin {array}{ccc} 2 & 0 & 0 \\ 2 & -2 & -1 \\ -2 & 6 & 3 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.404 |
|
| \(\left [\begin {array}{ccc} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.405 |
|
| \(\left [\begin {array}{ccc} 2 & -2 & 0 \\ 2 & -2 & -1 \\ -2 & 2 & 3 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.392 |
|
| \(\left [\begin {array}{ccc} 1 & 0 & -1 \\ -2 & 3 & -1 \\ -6 & 6 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.385 |
|
| \(\left [\begin {array}{ccc} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.371 |
|
| \(\left [\begin {array}{ccc} 1 & 0 & 0 \\ -6 & 8 & 2 \\ 12 & -15 & -3 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.401 |
|
| \(\left [\begin {array}{ccc} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.300 |
|
| \(\left [\begin {array}{ccc} 1 & 0 & 0 \\ -4 & 7 & 2 \\ 10 & -15 & -4 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.319 |
|
| \(\left [\begin {array}{ccc} 4 & -3 & 1 \\ 2 & -1 & 1 \\ 0 & 0 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.303 |
|
| \(\left [\begin {array}{ccc} 5 & -6 & 3 \\ 6 & -7 & 3 \\ 6 & -6 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.310 |
|
| \(\left [\begin {array}{cccc} 1 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 4 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.650 |
|
| \(\left [\begin {array}{cccc} 1 & 0 & 4 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.419 |
|
| \(\left [\begin {array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.417 |
|
| \(\left [\begin {array}{cccc} 4 & 0 & 0 & -3 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 6 & 0 & 0 & -5 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.650 |
|
| \(\left [\begin {array}{cc} 0 & 1 \\ -1 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.210 |
|
| \(\left [\begin {array}{cc} 0 & -6 \\ 6 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.215 |
|
| \(\left [\begin {array}{cc} 0 & -3 \\ 12 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.230 |
|
| \(\left [\begin {array}{cc} 0 & -12 \\ 12 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.216 |
|
| \(\left [\begin {array}{cc} 0 & 24 \\ -6 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.221 |
|
| \(\left [\begin {array}{cc} 0 & -4 \\ 36 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.234 |
|
| \(\left [\begin {array}{ccc} 32 & -67 & 47 \\ 7 & -14 & 13 \\ -7 & 15 & -6 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.418 |
|
| \(\left [\begin {array}{cccc} 22 & -9 & -8 & -8 \\ 10 & -7 & -14 & 2 \\ 10 & 0 & 8 & -10 \\ 29 & -9 & -3 & -15 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.755 |
|
| \(\left [\begin {array}{cc} 5 & -4 \\ 2 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.182 |
|
| \(\left [\begin {array}{cc} 6 & -6 \\ 4 & -4 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.192 |
|
| \(\left [\begin {array}{cc} 5 & -3 \\ 2 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.189 |
|
| \(\left [\begin {array}{cc} 5 & -4 \\ 3 & -2 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.193 |
|
| \(\left [\begin {array}{cc} 9 & -8 \\ 6 & -5 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.196 |
|
| \(\left [\begin {array}{cc} 10 & -6 \\ 12 & -7 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.198 |
|
| \(\left [\begin {array}{cc} 6 & -10 \\ 2 & -3 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.197 |
|
| \(\left [\begin {array}{cc} 11 & -15 \\ 6 & -8 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.196 |
|
| \(\left [\begin {array}{cc} -1 & 4 \\ -1 & 3 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.118 |
|
| \(\left [\begin {array}{cc} 3 & -1 \\ 1 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.113 |
|
| \(\left [\begin {array}{cc} 5 & 1 \\ -9 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.123 |
|
| \(\left [\begin {array}{cc} 11 & 9 \\ -16 & -13 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.123 |
|
| \(\left [\begin {array}{ccc} 1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.284 |
|
| \(\left [\begin {array}{ccc} 2 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.307 |
|
| \(\left [\begin {array}{ccc} 3 & -3 & 1 \\ 2 & -2 & 1 \\ 0 & 0 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.307 |
|
| \(\left [\begin {array}{ccc} 3 & -2 & 0 \\ 0 & 1 & 0 \\ -4 & 4 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.303 |
|
| \(\left [\begin {array}{ccc} 7 & -8 & 3 \\ 6 & -7 & 3 \\ 2 & -2 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.400 |
|
| \(\left [\begin {array}{ccc} 6 & -5 & 2 \\ 4 & -3 & 2 \\ 2 & -2 & 3 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.396 |
|
| \(\left [\begin {array}{ccc} 1 & 1 & -1 \\ -2 & 4 & -1 \\ -4 & 4 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.398 |
|
| \(\left [\begin {array}{ccc} 2 & 0 & 0 \\ -6 & 11 & 2 \\ 6 & -15 & 0 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.414 |
|
| \(\left [\begin {array}{ccc} 0 & 1 & 0 \\ -1 & 2 & 0 \\ -1 & 1 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.194 |
|
| \(\left [\begin {array}{ccc} 2 & -2 & 1 \\ -1 & 2 & 0 \\ -5 & 7 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.177 |
|
| \(\left [\begin {array}{ccc} -2 & 4 & -1 \\ -3 & 5 & -1 \\ -1 & 1 & 1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.282 |
|
| \(\left [\begin {array}{ccc} 3 & -2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.278 |
|
| \(\left [\begin {array}{cccc} 1 & 0 & -2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.421 |
|
| \(\left [\begin {array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.420 |
|
| \(\left [\begin {array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.369 |
|
| \(\left [\begin {array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.367 |
|
| \(\left [\begin {array}{ccccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end {array}\right ]\) |
Eigenvectors |
✓ |
N/A |
N/A |
N/A |
0.361 |
|