2.2.139 Problems 13801 to 13900

Table 2.279: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13801

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -3 y = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.929

13802

\[ {}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]
i.c.

[[_Emden, _Fowler]]

3.697

13803

\[ {}x^{2} y^{\prime \prime }-5 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.996

13804

\[ {}3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0 \]
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

1.879

13805

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]
i.c.

[[_Emden, _Fowler]]

4.990

13806

\[ {}a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

14.753

13807

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 y^{\prime } x +n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

0.705

13808

\[ {}y^{\prime \prime }-y^{\prime } x +y = 0 \]

[_Hermite]

0.460

13809

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

[[_Emden, _Fowler]]

0.558

13810

\[ {}2 x y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

0.775

13811

\[ {}y^{\prime \prime }-2 y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.489

13812

\[ {}y^{\prime \prime }-2 y^{\prime } x +4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.468

13813

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 y^{\prime } x -y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.153

13814

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x -x^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.666

13815

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-1\right ) y = 0 \]

[_Bessel]

1.104

13816

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (-n^{2}+x^{2}\right ) y = 0 \]

[_Bessel]

0.772

13817

\[ {}\left [\begin {array}{c} x^{\prime }=4 x-y \\ y^{\prime }=2 x+y+t^{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.589

13818

\[ {}\left [\begin {array}{c} x^{\prime }=x-4 y+\cos \left (2 t \right ) \\ y^{\prime }=x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.806

13819

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+2 y \\ y^{\prime }=6 x+3 y+{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.579

13820

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-4 y+{\mathrm e}^{3 t} \\ y^{\prime }=x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.555

13821

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+5 y \\ y^{\prime }=-2 x+\cos \left (3 t \right ) \end {array}\right ] \]
i.c.

system_of_ODEs

1.022

13822

\[ {}\left [\begin {array}{c} x^{\prime }=x+y+{\mathrm e}^{-t} \\ y^{\prime }=4 x-2 y+{\mathrm e}^{2 t} \end {array}\right ] \]
i.c.

system_of_ODEs

0.627

13823

\[ {}\left [\begin {array}{c} x^{\prime }=8 x+14 y \\ y^{\prime }=7 x+y \end {array}\right ] \]
i.c.

system_of_ODEs

0.592

13824

\(\left [\begin {array}{cc} 2 & 2 \\ 0 & -4 \end {array}\right ]\)

Eigenvectors

0.146

13825

\(\left [\begin {array}{cc} 7 & -2 \\ 26 & -1 \end {array}\right ]\)

Eigenvectors

0.201

13826

\(\left [\begin {array}{cc} 9 & 2 \\ 2 & 6 \end {array}\right ]\)

Eigenvectors

0.143

13827

\(\left [\begin {array}{cc} 7 & 1 \\ -4 & 11 \end {array}\right ]\)

Eigenvectors

0.106

13828

\(\left [\begin {array}{cc} 2 & -3 \\ 3 & 2 \end {array}\right ]\)

Eigenvectors

0.180

13829

\(\left [\begin {array}{cc} 6 & 0 \\ 0 & -13 \end {array}\right ]\)

Eigenvectors

0.135

13830

\(\left [\begin {array}{cc} 4 & -2 \\ 1 & 2 \end {array}\right ]\)

Eigenvectors

0.177

13831

\(\left [\begin {array}{cc} 3 & -1 \\ 1 & 1 \end {array}\right ]\)

Eigenvectors

0.102

13832

\(\left [\begin {array}{cc} -7 & 6 \\ 12 & -1 \end {array}\right ]\)

Eigenvectors

0.141

13833

\[ {}\left [\begin {array}{c} x^{\prime }=8 x+14 y \\ y^{\prime }=7 x+y \end {array}\right ] \]

system_of_ODEs

0.404

13834

\[ {}\left [\begin {array}{c} x^{\prime }=2 x \\ y^{\prime }=-5 x-3 y \end {array}\right ] \]

system_of_ODEs

0.388

13835

\[ {}\left [\begin {array}{c} x^{\prime }=11 x-2 y \\ y^{\prime }=3 x+4 y \end {array}\right ] \]

system_of_ODEs

0.417

13836

\[ {}\left [\begin {array}{c} x^{\prime }=x+20 y \\ y^{\prime }=40 x-19 y \end {array}\right ] \]

system_of_ODEs

0.423

13837

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+2 y \\ y^{\prime }=x-y \end {array}\right ] \]

system_of_ODEs

0.391

13838

\[ {}\left [\begin {array}{c} x^{\prime }=-y \\ y^{\prime }=x-y \end {array}\right ] \]

system_of_ODEs

0.687

13839

\[ {}\left [\begin {array}{c} x^{\prime }=-2 x+3 y \\ y^{\prime }=-6 x+4 y \end {array}\right ] \]

system_of_ODEs

0.546

13840

\[ {}\left [\begin {array}{c} x^{\prime }=-11 x-2 y \\ y^{\prime }=13 x-9 y \end {array}\right ] \]

system_of_ODEs

0.570

13841

\[ {}\left [\begin {array}{c} x^{\prime }=7 x-5 y \\ y^{\prime }=10 x-3 y \end {array}\right ] \]

system_of_ODEs

0.513

13842

\[ {}\left [\begin {array}{c} x^{\prime }=5 x-4 y \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.390

13843

\[ {}\left [\begin {array}{c} x^{\prime }=-6 x+2 y \\ y^{\prime }=-2 x-2 y \end {array}\right ] \]

system_of_ODEs

0.384

13844

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x-y \\ y^{\prime }=x-5 y \end {array}\right ] \]

system_of_ODEs

0.412

13845

\[ {}\left [\begin {array}{c} x^{\prime }=13 x \\ y^{\prime }=13 y \end {array}\right ] \]

system_of_ODEs

0.322

13846

\[ {}\left [\begin {array}{c} x^{\prime }=7 x-4 y \\ y^{\prime }=x+3 y \end {array}\right ] \]

system_of_ODEs

0.381

13847

\[ {}\left [\begin {array}{c} x^{\prime }=y-x \\ y^{\prime }=y-x \end {array}\right ] \]

system_of_ODEs

0.326

13848

\[ {}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \]

[_separable]

2.205

13849

\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.187

13850

\[ {}y^{\prime } x = y+\sqrt {x^{2}+y^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.278

13851

\[ {}y^{\prime } x +y = x^{3} \]

[_linear]

1.516

13852

\[ {}y-y^{\prime } x = x^{2} y y^{\prime } \]

[[_homogeneous, ‘class G‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

3.319

13853

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

[[_linear, ‘class A‘]]

1.287

13854

\[ {}y \sin \left (x \right )+y^{\prime } \cos \left (x \right ) = 1 \]

[_linear]

1.830

13855

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

1.992

13856

\[ {}x^{\prime } = x+\sin \left (t \right ) \]

[[_linear, ‘class A‘]]

1.309

13857

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.200

13858

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

[_separable]

5.070

13859

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

[_quadrature]

2.366

13860

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

[[_homogeneous, ‘class A‘], _dAlembert]

10.020

13861

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

[_quadrature]

0.253

13862

\[ {}y = y^{\prime } x +\frac {1}{y} \]

[_separable]

4.407

13863

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

[_quadrature]

0.740

13864

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

[[_homogeneous, ‘class G‘], _rational]

5.838

13865

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

[_quadrature]

1.691

13866

\[ {}{y^{\prime }}^{2}+y^{2} = 4 \]

[_quadrature]

0.549

13867

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.019

13868

\[ {}y^{\prime }-\frac {y}{x +1}+y^{2} = 0 \]

[[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

1.680

13869

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

14.960

13870

\[ {}y^{\prime } = x y^{3}+x^{2} \]
i.c.

[_Abel]

0.711

13871

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

1.029

13872

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.739

13873

\[ {}{y^{\prime }}^{3}-{\mathrm e}^{2 x} y^{\prime } = 0 \]

[_quadrature]

0.902

13874

\[ {}y = 5 y^{\prime } x -{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.421

13875

\[ {}y^{\prime } = x -y^{2} \]
i.c.

[[_Riccati, _special]]

18.579

13876

\[ {}y^{\prime } = \left (x -5 y\right )^{{1}/{3}}+2 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.552

13877

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.361

13878

\[ {}x^{\prime }+5 x = 10 t +2 \]
i.c.

[[_linear, ‘class A‘]]

1.609

13879

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]
i.c.

[[_homogeneous, ‘class D‘], _rational, _Bernoulli]

2.311

13880

\[ {}y = y^{\prime } x +{y^{\prime }}^{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.491

13881

\[ {}y = y^{\prime } x +{y^{\prime }}^{2} \]
i.c.

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.448

13882

\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.785

13883

\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

[_linear]

1.735

13884

\[ {}y = x^{2}+2 y^{\prime } x +\frac {{y^{\prime }}^{2}}{2} \]

[[_homogeneous, ‘class G‘]]

9.293

13885

\[ {}y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \]

[[_homogeneous, ‘class G‘], _rational, _Bernoulli]

1.835

13886

\[ {}y \left ({y^{\prime }}^{2}+1\right ) = a \]

[_quadrature]

0.479

13887

\[ {}x^{2}-y+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

[_rational]

1.181

13888

\[ {}3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

3.977

13889

\[ {}\left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.354

13890

\[ {}y^{\prime } = \frac {x +y-3}{-x +y+1} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.381

13891

\[ {}y^{\prime } x -y^{2} \ln \left (x \right )+y = 0 \]

[_Bernoulli]

2.053

13892

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

[_linear]

2.536

13893

\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.809

13894

\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \]

[_exact, _rational]

1.177

13895

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

4.848

13896

\[ {}3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, _Bernoulli]

2.508

13897

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.457

13898

\[ {}{y^{\prime }}^{2}-2 y^{\prime } x +y = 0 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.352

13899

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

[_separable]

1.069

13900

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]
i.c.

[[_2nd_order, _missing_x]]

2.439