2.2.139 Problems 13801 to 13900

Table 2.279: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

13801

\[ {}\left [\begin {array}{c} x^{\prime }=2 x+y-z+5 \sin \left (t \right ) \\ y^{\prime }=y+z-10 \cos \left (t \right ) \\ z^{\prime }=x+z+2 \end {array}\right ] \]
i.c.

system_of_ODEs

1.529

13802

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+3 y+z+5 \sin \left (2 t \right ) \\ y^{\prime }=x-5 y-3 z+5 \cos \left (2 t \right ) \\ z^{\prime }=-3 x+7 y+3 z+23 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

2.445

13803

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+y-3 z+2 \,{\mathrm e}^{t} \\ y^{\prime }=4 x-y+2 z+4 \,{\mathrm e}^{t} \\ z^{\prime }=4 x-2 y+3 z+4 \,{\mathrm e}^{t} \end {array}\right ] \]
i.c.

system_of_ODEs

1.485

13804

\[ {}\left [\begin {array}{c} x^{\prime }=x+5 y+10 \sinh \left (t \right ) \\ y^{\prime }=19 x-13 y+24 \sinh \left (t \right ) \end {array}\right ] \]

system_of_ODEs

1.328

13805

\[ {}\left [\begin {array}{c} x^{\prime }=9 x-3 y-6 t \\ y^{\prime }=-x+11 y+10 t \end {array}\right ] \]

system_of_ODEs

0.506

13806

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.336

13807

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

[_Lienard]

0.391

13808

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.137

13809

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.328

13810

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

9.547

13811

\[ {}y^{\prime \prime }+y = f \left (x \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

0.905

13812

\[ {}x^{2} y^{\prime \prime }+x \left (-\frac {1}{2}+x \right ) y^{\prime }+\frac {y}{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.026

13813

\[ {}x^{2} y^{\prime \prime }+x \left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.846

13814

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y = 0 \]

[_Jacobi]

0.768

13815

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (x +1\right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.669

13816

\[ {}x y^{\prime \prime }+4 y^{\prime }-x y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.754

13817

\[ {}2 x y^{\prime \prime }+\left (x +1\right ) y^{\prime }-k y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.993

13818

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.118

13819

\[ {}x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.171

13820

\[ {}2 x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.919

13821

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.229

13822

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.918

13823

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_Emden, _Fowler]]

0.724

13824

\[ {}x y^{\prime \prime }+x^{2} y = 0 \]

[[_Emden, _Fowler]]

0.665

13825

\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

1.626

13826

\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \]

[[_2nd_order, _missing_x]]

3.317

13827

\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

[[_2nd_order, _missing_x]]

1.067

13828

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

[_Gegenbauer]

0.945

13829

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

13.335

13830

\[ {}y^{\prime }+\cos \left (x \right ) y = \frac {\sin \left (2 x \right )}{2} \]

[_linear]

2.164

13831

\[ {}{y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0 \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.402

13832

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

2.005

13833

\[ {}x y \left (1-{y^{\prime }}^{2}\right ) = \left (x^{2}-y^{2}-a^{2}\right ) y^{\prime } \]

[_rational]

117.937

13834

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

[[_3rd_order, _missing_y]]

0.174

13835

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

[[_2nd_order, _with_linear_symmetries]]

0.873

13836

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.073

13837

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

[[_2nd_order, _missing_y]]

0.687

13838

\[ {}y-x y^{\prime } = 0 \]

[_separable]

1.270

13839

\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

[_separable]

1.377

13840

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

[_separable]

1.496

13841

\[ {}\left (t^{2}+x t^{2}\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

[_separable]

1.631

13842

\[ {}y-a +x^{2} y^{\prime } = 0 \]

[_separable]

0.915

13843

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

[_separable]

1.546

13844

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

[_separable]

1.825

13845

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

[_separable]

2.017

13846

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

[_separable]

1.338

13847

\[ {}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \]

[_separable]

2.023

13848

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }-\sqrt {1-y^{2}} = 0 \]

[_separable]

4.750

13849

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

[_separable]

3.141

13850

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

[_separable]

1.877

13851

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.719

13852

\[ {}x +y+x y^{\prime } = 0 \]

[_linear]

1.879

13853

\[ {}x +y+\left (y-x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.734

13854

\[ {}-y+x y^{\prime } = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.910

13855

\[ {}8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.266

13856

\[ {}2 \sqrt {s t}-s+t s^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.562

13857

\[ {}t -s+t s^{\prime } = 0 \]

[_linear]

1.253

13858

\[ {}x y^{2} y^{\prime } = x^{3}+y^{3} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

7.945

13859

\[ {}x \cos \left (\frac {y}{x}\right ) \left (x y^{\prime }+y\right ) = y \sin \left (\frac {y}{x}\right ) \left (-y+x y^{\prime }\right ) \]

[[_homogeneous, ‘class A‘], _dAlembert]

6.721

13860

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.632

13861

\[ {}x +2 y+1-\left (4 y+2 x +3\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.406

13862

\[ {}x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0 \]

[_linear]

1.222

13863

\[ {}\frac {y-x y^{\prime }}{\sqrt {y^{2}+x^{2}}} = m \]

[[_homogeneous, ‘class A‘], _dAlembert]

15.253

13864

\[ {}\frac {x +y^{\prime } y}{\sqrt {y^{2}+x^{2}}} = m \]

[[_homogeneous, ‘class A‘], _exact, _dAlembert]

72.728

13865

\[ {}y+\frac {x}{y^{\prime }} = \sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

6.286

13866

\[ {}y^{\prime } y = -x +\sqrt {y^{2}+x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

5.615

13867

\[ {}y^{\prime }-\frac {2 y}{x +1} = \left (x +1\right )^{3} \]

[_linear]

1.330

13868

\[ {}y^{\prime }-\frac {a y}{x} = \frac {x +1}{x} \]

[_linear]

1.306

13869

\[ {}\left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3} = 0 \]

[_linear]

1.457

13870

\[ {}s^{\prime } \cos \left (t \right )+s \sin \left (t \right ) = 1 \]

[_linear]

1.848

13871

\[ {}s^{\prime }+s \cos \left (t \right ) = \frac {\sin \left (2 t \right )}{2} \]

[_linear]

2.144

13872

\[ {}y^{\prime }-\frac {n y}{x} = {\mathrm e}^{x} x^{n} \]

[_linear]

1.355

13873

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

[_linear]

1.000

13874

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

[[_linear, ‘class A‘]]

0.964

13875

\[ {}y^{\prime }+\frac {\left (-2 x +1\right ) y}{x^{2}}-1 = 0 \]

[_linear]

1.464

13876

\[ {}y^{\prime }+x y = x^{3} y^{3} \]

[_Bernoulli]

1.198

13877

\[ {}\left (-x^{2}+1\right ) y^{\prime }-x y+a x y^{2} = 0 \]

[_separable]

2.261

13878

\[ {}3 y^{2} y^{\prime }-a y^{3}-x -1 = 0 \]

[_rational, _Bernoulli]

1.683

13879

\[ {}y^{\prime } \left (y^{3} x^{2}+x y\right ) = 1 \]

[[_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.457

13880

\[ {}x y^{\prime } = \left (y \ln \left (x \right )-2\right ) y \]

[_Bernoulli]

1.936

13881

\[ {}y-y^{\prime } \cos \left (x \right ) = y^{2} \cos \left (x \right ) \left (-\sin \left (x \right )+1\right ) \]

[_Bernoulli]

6.039

13882

\[ {}x^{2}+y+\left (x -2 y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.152

13883

\[ {}y-3 x^{2}-\left (4 y-x \right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.194

13884

\[ {}\left (y^{3}-x \right ) y^{\prime } = y \]

[[_homogeneous, ‘class G‘], _exact, _rational]

6.652

13885

\[ {}\frac {y^{2}}{\left (x -y\right )^{2}}-\frac {1}{x}+\left (\frac {1}{y}-\frac {x^{2}}{\left (x -y\right )^{2}}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.961

13886

\[ {}6 x y^{2}+4 x^{3}+3 \left (2 x^{2} y+y^{2}\right ) y^{\prime } = 0 \]

[_exact, _rational]

1.379

13887

\[ {}\frac {x}{\left (x +y\right )^{2}}+\frac {\left (2 x +y\right ) y^{\prime }}{\left (x +y\right )^{2}} = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

2.302

13888

\[ {}\frac {1}{x^{2}}+\frac {3 y^{2}}{x^{4}} = \frac {2 y y^{\prime }}{x^{3}} \]

[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli]

3.931

13889

\[ {}\frac {x^{2} y^{\prime }}{\left (x -y\right )^{2}}-\frac {y^{2}}{\left (x -y\right )^{2}} = 0 \]

[_separable]

2.339

13890

\[ {}x +y^{\prime } y = \frac {y}{y^{2}+x^{2}}-\frac {x y^{\prime }}{y^{2}+x^{2}} \]

[[_1st_order, _with_linear_symmetries], _exact, _rational]

1.684

13891

\[ {}y = 2 x y^{\prime }+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.436

13892

\[ {}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2} \]

[[_homogeneous, ‘class C‘], _rational, _dAlembert]

0.507

13893

\[ {}y = x \left (1+y^{\prime }\right )+{y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.496

13894

\[ {}y = y {y^{\prime }}^{2}+2 x y^{\prime } \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

1.958

13895

\[ {}y = y^{\prime } y+y^{\prime }-{y^{\prime }}^{2} \]

[_quadrature]

1.353

13896

\[ {}y = x y^{\prime }+\sqrt {1-{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

1.583

13897

\[ {}y = x y^{\prime }+y^{\prime } \]

[_separable]

1.371

13898

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

[[_homogeneous, ‘class G‘], _rational, _Clairaut]

0.394

13899

\[ {}y = x y^{\prime }-\frac {1}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.701

13900

\[ {}y^{\prime } = \frac {2 y}{x}-\sqrt {3} \]

[_linear]

2.026