2.2.132 Problems 13101 to 13200

Table 2.277: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

time(sec)

13101

\begin{align*} x^{\prime \prime }-x^{\prime }+y^{\prime }&=0 \\ x^{\prime \prime }+y^{\prime \prime }-x&=0 \\ \end{align*}

system_of_ODEs

0.027

13102

\begin{align*} x^{\prime }&=2 x \\ y^{\prime }&=3 x-2 y \\ z^{\prime }&=2 y+3 z \\ \end{align*}

system_of_ODEs

0.513

13103

\begin{align*} x^{\prime }&=4 x \\ y^{\prime }&=x-2 y \\ z^{\prime }&=x-4 y+z \\ \end{align*}

system_of_ODEs

0.510

13104

\begin{align*} x^{\prime }&=y-z \\ y^{\prime }&=x+y \\ z^{\prime }&=x+z \\ \end{align*}

system_of_ODEs

0.427

13105

\begin{align*} x^{\prime }-y+z&=0 \\ -x+y^{\prime }-y&=t \\ z^{\prime }-x-z&=t \\ \end{align*}

system_of_ODEs

0.630

13106

\begin{align*} a x^{\prime }&=b c \left (y-z\right ) \\ b y^{\prime }&=c a \left (z-x\right ) \\ c z^{\prime }&=a b \left (x-y\right ) \\ \end{align*}

system_of_ODEs

1.528

13107

\begin{align*} x^{\prime }&=c y-b z \\ y^{\prime }&=a z-c x \\ z^{\prime }&=b x-a y \\ \end{align*}

system_of_ODEs

1.253

13108

\begin{align*} x^{\prime }&=x+y-z \\ y^{\prime }&=y+z-x \\ z^{\prime }&=x-y+z \\ \end{align*}

system_of_ODEs

0.740

13109

\begin{align*} x^{\prime }&=-3 x+48 y-28 z \\ y^{\prime }&=-4 x+40 y-22 z \\ z^{\prime }&=-6 x+57 y-31 z \\ \end{align*}

system_of_ODEs

0.615

13110

\begin{align*} x^{\prime }&=6 x-72 y+44 z \\ y^{\prime }&=4 x-4 y+26 z \\ z^{\prime }&=6 x-63 y+38 z \\ \end{align*}

system_of_ODEs

12.652

13111

\begin{align*} x^{\prime }&=a x+g y+\beta z \\ y^{\prime }&=g x+b y+\alpha z \\ z^{\prime }&=\beta x+\alpha y+c z \\ \end{align*}

system_of_ODEs

165.232

13112

\begin{align*} t x^{\prime }&=2 x-t \\ t^{3} y^{\prime }&=-x+t^{2} y+t \\ t^{4} z^{\prime }&=-x-t^{2} y+t^{3} z+t \\ \end{align*}

system_of_ODEs

0.042

13113

\begin{align*} a t x^{\prime }&=b c \left (y-z\right ) \\ b t y^{\prime }&=c a \left (z-x\right ) \\ c t z^{\prime }&=a b \left (x-y\right ) \\ \end{align*}

system_of_ODEs

0.040

13114

\begin{align*} x_{1}^{\prime }&=a x_{2}+b x_{3} \cos \left (c t \right )+b x_{4} \sin \left (c t \right ) \\ x_{2}^{\prime }&=-a x_{1}+b x_{3} \sin \left (c t \right )-b x_{4} \cos \left (c t \right ) \\ x_{3}^{\prime }&=-b x_{1} \cos \left (c t \right )-b x_{2} \sin \left (c t \right )+a x_{4} \\ x_{4}^{\prime }&=-b x_{1} \sin \left (c t \right )+b x_{2} \cos \left (c t \right )-a x_{3} \\ \end{align*}

system_of_ODEs

0.063

13115

\begin{align*} x^{\prime }&=-x \left (x+y\right ) \\ y^{\prime }&=y \left (x+y\right ) \\ \end{align*}

system_of_ODEs

0.024

13116

\begin{align*} x^{\prime }&=\left (a y+b \right ) x \\ y^{\prime }&=\left (c x+d \right ) y \\ \end{align*}

system_of_ODEs

0.025

13117

\begin{align*} x^{\prime }&=x \left (a \left (p x+q y\right )+\alpha \right ) \\ y^{\prime }&=y \left (\beta +b \left (p x+q y\right )\right ) \\ \end{align*}

system_of_ODEs

0.028

13118

\begin{align*} x^{\prime }&=h \left (a -x\right ) \left (c -x-y\right ) \\ y^{\prime }&=k \left (b -y\right ) \left (c -x-y\right ) \\ \end{align*}

system_of_ODEs

0.028

13119

\begin{align*} x^{\prime }&=y^{2}-\cos \left (x\right ) \\ y^{\prime }&=-y \sin \left (x\right ) \\ \end{align*}

system_of_ODEs

0.025

13120

\begin{align*} x^{\prime }&=-x \,y^{2}+x+y \\ y^{\prime }&=y \,x^{2}-x-y \\ \end{align*}

system_of_ODEs

0.027

13121

\begin{align*} x^{\prime }&=x+y-x \left (x^{2}+y^{2}\right ) \\ y^{\prime }&=-x+y-y \left (x^{2}+y^{2}\right ) \\ \end{align*}

system_of_ODEs

0.029

13122

\begin{align*} x^{\prime }&=-y+x \left (x^{2}+y^{2}-1\right ) \\ y^{\prime }&=x+y \left (x^{2}+y^{2}-1\right ) \\ \end{align*}

system_of_ODEs

0.028

13123

\begin{align*} \left (t^{2}+1\right ) x^{\prime }&=-t x+y \\ \left (t^{2}+1\right ) y^{\prime }&=-x-t y \\ \end{align*}

system_of_ODEs

0.029

13124

\begin{align*} \left (x^{2}+y^{2}-t^{2}\right ) x^{\prime }&=-2 t x \\ \left (x^{2}+y^{2}-t^{2}\right ) y^{\prime }&=-2 t y \\ \end{align*}

system_of_ODEs

0.033

13125

\begin{align*} {x^{\prime }}^{2}+t x^{\prime }+a y^{\prime }-x&=0 \\ x^{\prime } y^{\prime }+y^{\prime } t -y&=0 \\ \end{align*}

system_of_ODEs

0.040

13126

\begin{align*} x&=t x^{\prime }+f \left (x^{\prime }, y^{\prime }\right ) \\ y&=y^{\prime } t +g \left (x^{\prime }, y^{\prime }\right ) \\ \end{align*}

system_of_ODEs

0.047

13127

\begin{align*} x^{\prime \prime }&=a \,{\mathrm e}^{2 x}-{\mathrm e}^{-x}+{\mathrm e}^{-2 x} \cos \left (y\right )^{2} \\ y^{\prime \prime }&={\mathrm e}^{-2 x} \sin \left (y\right ) \cos \left (y\right )-\frac {\sin \left (y\right )}{\cos \left (y\right )^{3}} \\ \end{align*}

system_of_ODEs

0.033

13128

\begin{align*} x^{\prime \prime }&=\frac {k x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} \\ y^{\prime \prime }&=\frac {k y}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} \\ \end{align*}

system_of_ODEs

0.023

13129

\begin{align*} x^{\prime }&=y-z \\ y^{\prime }&=x^{2}+y \\ z^{\prime }&=x^{2}+z \\ \end{align*}

system_of_ODEs

0.028

13130

\begin{align*} a x^{\prime }&=\left (b -c \right ) y z \\ b y^{\prime }&=\left (c -a \right ) z x \\ c z^{\prime }&=\left (a -b \right ) x y \\ \end{align*}

system_of_ODEs

0.039

13131

\begin{align*} x^{\prime }&=x \left (y-z\right ) \\ y^{\prime }&=y \left (z-x\right ) \\ z^{\prime }&=z \left (x-y\right ) \\ \end{align*}

system_of_ODEs

0.031

13132

\begin{align*} x^{\prime }+y^{\prime }&=x y \\ y^{\prime }+z^{\prime }&=y z \\ x^{\prime }+z^{\prime }&=x z \\ \end{align*}

system_of_ODEs

0.041

13133

\begin{align*} x^{\prime }&=\frac {x^{2}}{2}-\frac {y}{24} \\ y^{\prime }&=2 x y-3 z \\ z^{\prime }&=3 x z-\frac {y^{2}}{6} \\ \end{align*}

system_of_ODEs

0.032

13134

\begin{align*} x^{\prime }&=x \left (y^{2}-z^{2}\right ) \\ y^{\prime }&=y \left (z^{2}-x^{2}\right ) \\ z^{\prime }&=z \left (x^{2}-y^{2}\right ) \\ \end{align*}

system_of_ODEs

0.031

13135

\begin{align*} x^{\prime }&=x \left (y^{2}-z^{2}\right ) \\ y^{\prime }&=-y \left (z^{2}+x^{2}\right ) \\ z^{\prime }&=z \left (x^{2}+y^{2}\right ) \\ \end{align*}

system_of_ODEs

0.036

13136

\begin{align*} x^{\prime }&=-x \,y^{2}+x+y \\ y^{\prime }&=y \,x^{2}-x-y \\ z^{\prime }&=y^{2}-x^{2} \\ \end{align*}

system_of_ODEs

0.031

13137

\begin{align*} \left (x-y\right ) \left (x-z\right ) x^{\prime }&=f \left (t \right ) \\ \left (-x+y\right ) \left (y-z\right ) y^{\prime }&=f \left (t \right ) \\ \left (z-x\right ) \left (z-y\right ) z^{\prime }&=f \left (t \right ) \\ \end{align*}

system_of_ODEs

0.041

13138

\(\left [\begin {array}{cc} 4 & -2 \\ 1 & 1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.184

13139

\(\left [\begin {array}{cc} 5 & -6 \\ 3 & -4 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.184

13140

\(\left [\begin {array}{cc} 8 & -6 \\ 3 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.185

13141

\(\left [\begin {array}{cc} 4 & -3 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.194

13142

\(\left [\begin {array}{cc} 10 & -9 \\ 6 & -5 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.207

13143

\(\left [\begin {array}{cc} 6 & -4 \\ 3 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.205

13144

\(\left [\begin {array}{cc} 10 & -8 \\ 6 & -4 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.191

13145

\(\left [\begin {array}{cc} 7 & -6 \\ 12 & -10 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.200

13146

\(\left [\begin {array}{cc} 8 & -10 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.188

13147

\(\left [\begin {array}{cc} 9 & -10 \\ 2 & 0 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.194

13148

\(\left [\begin {array}{cc} 19 & -10 \\ 21 & -10 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.210

13149

\(\left [\begin {array}{cc} 13 & -15 \\ 6 & -6 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.202

13150

\(\left [\begin {array}{ccc} 2 & 0 & 0 \\ 2 & -2 & -1 \\ -2 & 6 & 3 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.404

13151

\(\left [\begin {array}{ccc} 5 & 0 & 0 \\ 4 & -4 & -2 \\ -2 & 12 & 6 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.405

13152

\(\left [\begin {array}{ccc} 2 & -2 & 0 \\ 2 & -2 & -1 \\ -2 & 2 & 3 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.392

13153

\(\left [\begin {array}{ccc} 1 & 0 & -1 \\ -2 & 3 & -1 \\ -6 & 6 & 0 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.385

13154

\(\left [\begin {array}{ccc} 3 & 5 & -2 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.371

13155

\(\left [\begin {array}{ccc} 1 & 0 & 0 \\ -6 & 8 & 2 \\ 12 & -15 & -3 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.401

13156

\(\left [\begin {array}{ccc} 3 & 6 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.300

13157

\(\left [\begin {array}{ccc} 1 & 0 & 0 \\ -4 & 7 & 2 \\ 10 & -15 & -4 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.319

13158

\(\left [\begin {array}{ccc} 4 & -3 & 1 \\ 2 & -1 & 1 \\ 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.303

13159

\(\left [\begin {array}{ccc} 5 & -6 & 3 \\ 6 & -7 & 3 \\ 6 & -6 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.310

13160

\(\left [\begin {array}{cccc} 1 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 4 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.650

13161

\(\left [\begin {array}{cccc} 1 & 0 & 4 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.419

13162

\(\left [\begin {array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.417

13163

\(\left [\begin {array}{cccc} 4 & 0 & 0 & -3 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 6 & 0 & 0 & -5 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.650

13164

\(\left [\begin {array}{cc} 0 & 1 \\ -1 & 0 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.210

13165

\(\left [\begin {array}{cc} 0 & -6 \\ 6 & 0 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.215

13166

\(\left [\begin {array}{cc} 0 & -3 \\ 12 & 0 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.230

13167

\(\left [\begin {array}{cc} 0 & -12 \\ 12 & 0 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.216

13168

\(\left [\begin {array}{cc} 0 & 24 \\ -6 & 0 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.221

13169

\(\left [\begin {array}{cc} 0 & -4 \\ 36 & 0 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.234

13170

\(\left [\begin {array}{ccc} 32 & -67 & 47 \\ 7 & -14 & 13 \\ -7 & 15 & -6 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.418

13171

\(\left [\begin {array}{cccc} 22 & -9 & -8 & -8 \\ 10 & -7 & -14 & 2 \\ 10 & 0 & 8 & -10 \\ 29 & -9 & -3 & -15 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.755

13172

\(\left [\begin {array}{cc} 5 & -4 \\ 2 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.182

13173

\(\left [\begin {array}{cc} 6 & -6 \\ 4 & -4 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.192

13174

\(\left [\begin {array}{cc} 5 & -3 \\ 2 & 0 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.189

13175

\(\left [\begin {array}{cc} 5 & -4 \\ 3 & -2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.193

13176

\(\left [\begin {array}{cc} 9 & -8 \\ 6 & -5 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.196

13177

\(\left [\begin {array}{cc} 10 & -6 \\ 12 & -7 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.198

13178

\(\left [\begin {array}{cc} 6 & -10 \\ 2 & -3 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.197

13179

\(\left [\begin {array}{cc} 11 & -15 \\ 6 & -8 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.196

13180

\(\left [\begin {array}{cc} -1 & 4 \\ -1 & 3 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.118

13181

\(\left [\begin {array}{cc} 3 & -1 \\ 1 & 1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.113

13182

\(\left [\begin {array}{cc} 5 & 1 \\ -9 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.123

13183

\(\left [\begin {array}{cc} 11 & 9 \\ -16 & -13 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.123

13184

\(\left [\begin {array}{ccc} 1 & 3 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.284

13185

\(\left [\begin {array}{ccc} 2 & -2 & 1 \\ 2 & -2 & 1 \\ 2 & -2 & 1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.307

13186

\(\left [\begin {array}{ccc} 3 & -3 & 1 \\ 2 & -2 & 1 \\ 0 & 0 & 1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.307

13187

\(\left [\begin {array}{ccc} 3 & -2 & 0 \\ 0 & 1 & 0 \\ -4 & 4 & 1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.303

13188

\(\left [\begin {array}{ccc} 7 & -8 & 3 \\ 6 & -7 & 3 \\ 2 & -2 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.400

13189

\(\left [\begin {array}{ccc} 6 & -5 & 2 \\ 4 & -3 & 2 \\ 2 & -2 & 3 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.396

13190

\(\left [\begin {array}{ccc} 1 & 1 & -1 \\ -2 & 4 & -1 \\ -4 & 4 & 1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.398

13191

\(\left [\begin {array}{ccc} 2 & 0 & 0 \\ -6 & 11 & 2 \\ 6 & -15 & 0 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.414

13192

\(\left [\begin {array}{ccc} 0 & 1 & 0 \\ -1 & 2 & 0 \\ -1 & 1 & 1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.194

13193

\(\left [\begin {array}{ccc} 2 & -2 & 1 \\ -1 & 2 & 0 \\ -5 & 7 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.177

13194

\(\left [\begin {array}{ccc} -2 & 4 & -1 \\ -3 & 5 & -1 \\ -1 & 1 & 1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.282

13195

\(\left [\begin {array}{ccc} 3 & -2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.278

13196

\(\left [\begin {array}{cccc} 1 & 0 & -2 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.421

13197

\(\left [\begin {array}{cccc} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.420

13198

\(\left [\begin {array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.369

13199

\(\left [\begin {array}{cccc} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.367

13200

\(\left [\begin {array}{ccccc} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end {array}\right ]\)

Eigenvectors

N/A

N/A

N/A

0.361