2.2.159 Problems 15801 to 15900

Table 2.319: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15801

\[ {}t y^{\prime }-{y^{\prime }}^{3} = y \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.500

15802

\[ {}t y^{\prime }-y-2 \left (t y^{\prime }-y\right )^{2} = y^{\prime }+1 \]

[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]

0.709

15803

\[ {}t y^{\prime }-y-1 = {y^{\prime }}^{2}-y^{\prime } \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.492

15804

\[ {}1+y-t y^{\prime } = \ln \left (y^{\prime }\right ) \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.807

15805

\[ {}1-2 t y^{\prime }+2 y = \frac {1}{{y^{\prime }}^{2}} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

1.006

15806

\[ {}y = -t y^{\prime }+\frac {{y^{\prime }}^{5}}{5} \]

[_dAlembert]

0.805

15807

\[ {}y = t {y^{\prime }}^{2}+3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3} \]

[_dAlembert]

11.263

15808

\[ {}y = t \left (y^{\prime }+1\right )+2 y^{\prime }+1 \]

[_linear]

1.204

15809

\[ {}y = t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1 \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

0.507

15810

\[ {}t^{{1}/{3}} y^{{2}/{3}}+t +\left (t^{{2}/{3}} y^{{1}/{3}}+y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _rational]

37.217

15811

\[ {}y^{\prime } = \frac {y^{2}-t^{2}}{t y} \]
i.c.

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

8.399

15812

\[ {}y \sin \left (\frac {t}{y}\right )-\left (t +t \sin \left (\frac {t}{y}\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class A‘], _dAlembert]

17.926

15813

\[ {}y^{\prime } = \frac {2 t^{5}}{5 y^{2}} \]

[_separable]

2.195

15814

\[ {}\cos \left (4 x \right )-8 \sin \left (y\right ) y^{\prime } = 0 \]

[_separable]

2.859

15815

\[ {}y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

[_separable]

1.970

15816

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

1.328

15817

\[ {}y^{\prime } = \frac {{\mathrm e}^{5 t}}{y^{4}} \]

[_separable]

1.248

15818

\[ {}-\frac {1}{x^{5}}+\frac {1}{x^{3}} = \left (2 y^{4}-6 y^{9}\right ) y^{\prime } \]

[_separable]

1.743

15819

\[ {}y^{\prime } = \frac {y \,{\mathrm e}^{-2 t}}{\ln \left (y\right )} \]

[_separable]

1.376

15820

\[ {}y^{\prime } = \frac {\left (4-7 x \right ) \left (2 y-3\right )}{\left (x -1\right ) \left (2 x -5\right )} \]

[_separable]

1.740

15821

\[ {}y^{\prime }+3 y = -10 \sin \left (t \right ) \]

[[_linear, ‘class A‘]]

1.247

15822

\[ {}3 t +\left (t -4 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert]

4.957

15823

\[ {}y-t +\left (y+t \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

3.656

15824

\[ {}y-x +y^{\prime } = 0 \]

[[_linear, ‘class A‘]]

0.948

15825

\[ {}y^{2}+\left (t y+t^{2}\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

6.059

15826

\[ {}r^{\prime } = \frac {r^{2}+t^{2}}{r t} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

4.483

15827

\[ {}x^{\prime } = \frac {5 t x}{x^{2}+t^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _dAlembert]

51.573

15828

\[ {}t^{2}-y+\left (-t +y\right ) y^{\prime } = 0 \]

[_exact, _rational, [_1st_order, ‘_with_symmetry_[F(x),G(x)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.126

15829

\[ {}t^{2} y+\sin \left (t \right )+\left (\frac {t^{3}}{3}-\cos \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

4.446

15830

\[ {}\tan \left (y\right )-t +\left (t \sec \left (y\right )^{2}+1\right ) y^{\prime } = 0 \]

[_exact]

3.897

15831

\[ {}t \ln \left (y\right )+\left (\frac {t^{2}}{2 y}+1\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

1.441

15832

\[ {}y^{\prime }+y = 5 \]

[_quadrature]

0.916

15833

\[ {}y^{\prime }+t y = t \]

[_separable]

1.347

15834

\[ {}x^{\prime }+\frac {x}{y} = y^{2} \]

[_linear]

1.195

15835

\[ {}t r^{\prime }+r = t \cos \left (t \right ) \]

[_linear]

1.193

15836

\[ {}y^{\prime }-y = t y^{3} \]

[_Bernoulli]

2.319

15837

\[ {}y^{\prime }+y = \frac {{\mathrm e}^{t}}{y^{2}} \]

[[_1st_order, _with_linear_symmetries], _Bernoulli]

2.044

15838

\[ {}y = t y^{\prime }+3 {y^{\prime }}^{4} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

2.542

15839

\[ {}y-t y^{\prime } = 2 y^{2} \ln \left (t \right ) \]

[[_homogeneous, ‘class D‘], _Bernoulli]

2.494

15840

\[ {}y-t y^{\prime } = -2 {y^{\prime }}^{3} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.432

15841

\[ {}y-t y^{\prime } = -4 {y^{\prime }}^{2} \]

[[_1st_order, _with_linear_symmetries], _Clairaut]

0.350

15842

\[ {}2 x -y-2+\left (2 y-x \right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

5.334

15843

\[ {}\cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime } = 0 \]
i.c.

[[_homogeneous, ‘class C‘], _exact, _dAlembert]

125.768

15844

\[ {}{\mathrm e}^{t y} y-2 t +t \,{\mathrm e}^{t y} y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

1.878

15845

\[ {}\sin \left (y\right )-y \cos \left (t \right )+\left (t \cos \left (y\right )-\sin \left (t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

9.025

15846

\[ {}y^{2}+\left (2 t y-2 \cos \left (y\right ) \sin \left (y\right )\right ) y^{\prime } = 0 \]
i.c.

[_exact, [_1st_order, ‘_with_symmetry_[F(x)*G(y),0]‘]]

2.125

15847

\[ {}\frac {y}{t}+\ln \left (y\right )+\left (\frac {t}{y}+\ln \left (t \right )\right ) y^{\prime } = 0 \]
i.c.

[_exact]

2.066

15848

\[ {}y^{\prime } = y^{2}-x \]
i.c.

[[_Riccati, _special]]

17.343

15849

\[ {}y^{\prime } = \sqrt {x -y} \]
i.c.

[[_homogeneous, ‘class C‘], _dAlembert]

2.357

15850

\[ {}y^{\prime } = t y^{3} \]
i.c.

[_separable]

3.331

15851

\[ {}y^{\prime } = \frac {t}{y^{3}} \]
i.c.

[_separable]

5.007

15852

\[ {}y^{\prime } = -\frac {y}{t -2} \]
i.c.

[_separable]

2.023

15853

\[ {}y^{\prime \prime }-y = 0 \]

[[_2nd_order, _missing_x]]

1.997

15854

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.844

15855

\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

[[_Emden, _Fowler]]

1.097

15856

\[ {}y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

1.990

15857

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.490

15858

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.813

15859

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.937

15860

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.865

15861

\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.607

15862

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

[[_2nd_order, _missing_x]]

0.836

15863

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

2.014

15864

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

[[_2nd_order, _missing_x]]

1.785

15865

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

1.300

15866

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

[[_2nd_order, _missing_x]]

0.417

15867

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

0.438

15868

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.474

15869

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

[[_2nd_order, _missing_x]]

0.417

15870

\[ {}y^{\prime \prime }+9 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

0.588

15871

\[ {}y^{\prime \prime }+49 y = 0 \]

[[_2nd_order, _missing_x]]

0.464

15872

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \]

[[_Emden, _Fowler]]

0.332

15873

\[ {}t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \]

[[_Emden, _Fowler]]

0.327

15874

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.378

15875

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

[[_2nd_order, _exact, _linear, _homogeneous]]

0.317

15876

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

[[_2nd_order, _missing_x]]

1.239

15877

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

[[_Emden, _Fowler]]

1.990

15878

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.312

15879

\[ {}t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.395

15880

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.106

15881

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

0.142

15882

\[ {}y^{\prime \prime } = 0 \]

[[_2nd_order, _quadrature]]

1.369

15883

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

[[_2nd_order, _missing_x]]

0.839

15884

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.266

15885

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

[[_2nd_order, _missing_x]]

0.845

15886

\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

[[_2nd_order, _missing_x]]

0.850

15887

\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.116

15888

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.820

15889

\[ {}4 y^{\prime \prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

2.012

15890

\[ {}y^{\prime \prime }+16 y = 0 \]

[[_2nd_order, _missing_x]]

2.021

15891

\[ {}y^{\prime \prime }+8 y = 0 \]

[[_2nd_order, _missing_x]]

2.040

15892

\[ {}y^{\prime \prime }+7 y = 0 \]

[[_2nd_order, _missing_x]]

2.105

15893

\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

[[_2nd_order, _missing_x]]

0.855

15894

\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

[[_2nd_order, _missing_x]]

0.864

15895

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.888

15896

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

[[_2nd_order, _missing_x]]

0.882

15897

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.621

15898

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.964

15899

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.380

15900

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.108