2.2.159 Problems 15801 to 15900

Table 2.319: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15801

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

[[_Emden, _Fowler]]

2.264

15802

\[ {}y^{\prime } = -\frac {x}{y} \]

[_separable]

3.331

15803

\[ {}3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class G‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class B‘]]

2.891

15804

\[ {}y^{\prime } = -\frac {2 y}{x}-3 \]

[_linear]

2.419

15805

\[ {}y \cos \left (t \right )+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(y)]‘], [_Abel, ‘2nd type‘, ‘class A‘]]

1.931

15806

\[ {}\frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

[_exact]

4.806

15807

\[ {}y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

[_quadrature]

0.521

15808

\[ {}y^{\prime } = x \sin \left (x^{2}\right ) \]

[_quadrature]

0.528

15809

\[ {}y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

[_quadrature]

0.240

15810

\[ {}y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

[_quadrature]

0.417

15811

\[ {}y^{\prime } = x \ln \left (x \right ) \]

[_quadrature]

0.441

15812

\[ {}y^{\prime } = x \,{\mathrm e}^{-x} \]

[_quadrature]

0.504

15813

\[ {}y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]

[_quadrature]

0.530

15814

\[ {}y^{\prime } = \frac {-x^{2}+x}{\left (x +1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

0.583

15815

\[ {}y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

[_quadrature]

0.333

15816

\[ {}y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

[_quadrature]

0.495

15817

\[ {}y^{\prime } = \frac {1}{x^{2}-16} \]

[_quadrature]

0.568

15818

\[ {}y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

[_quadrature]

0.598

15819

\[ {}y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

[_quadrature]

0.722

15820

\[ {}y^{\prime }+2 y = 0 \]
i.c.

[_quadrature]

1.778

15821

\[ {}y^{\prime }+y = \sin \left (t \right ) \]
i.c.

[[_linear, ‘class A‘]]

1.619

15822

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]
i.c.

[[_2nd_order, _missing_x]]

1.692

15823

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]
i.c.

[[_2nd_order, _missing_x]]

2.765

15824

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.141

15825

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]
i.c.

[[_3rd_order, _missing_x]]

0.142

15826

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.967

15827

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +5 y = 0 \]
i.c.

[[_Emden, _Fowler]]

2.937

15828

\[ {}y^{\prime } = 4 x^{3}-x +2 \]
i.c.

[_quadrature]

0.627

15829

\[ {}y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]
i.c.

[_quadrature]

0.864

15830

\[ {}y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]
i.c.

[_quadrature]

0.912

15831

\[ {}y^{\prime } = \frac {\ln \left (x \right )}{x} \]
i.c.

[_quadrature]

0.697

15832

\[ {}y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

[_separable]

3.073

15833

\[ {}y^{\prime } = \frac {y^{2}+2 x y}{x^{2}} \]

[[_homogeneous, ‘class A‘], _rational, _Bernoulli]

2.834

15834

\[ {}y^{\prime } x +y = \cos \left (x \right ) \]

[_linear]

1.299

15835

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

[[_2nd_order, _missing_x]]

2.100

15836

\[ {}\left [\begin {array}{c} x^{\prime }=4 y \\ y^{\prime }=-x-2 y \end {array}\right ] \]

system_of_ODEs

0.712

15837

\[ {}4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

[_rational]

32.020

15838

\[ {}y^{\prime } = \sin \left (x \right )^{4} \]
i.c.

[_quadrature]

0.917

15839

\[ {}y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]
i.c.

[[_high_order, _missing_x]]

0.104

15840

\[ {}\left [\begin {array}{c} x^{\prime }=4 y \\ y^{\prime }=-4 x \end {array}\right ] \]
i.c.

system_of_ODEs

0.493

15841

\[ {}\left [\begin {array}{c} x^{\prime }=-5 x+4 y \\ y^{\prime }=2 x+2 y \end {array}\right ] \]
i.c.

system_of_ODEs

0.610

15842

\[ {}y^{\prime }+y \cos \left (x \right ) = 0 \]

[_separable]

1.813

15843

\[ {}y^{\prime }-y = \sin \left (x \right ) \]

[[_linear, ‘class A‘]]

1.303

15844

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

[[_2nd_order, _missing_x]]

1.054

15845

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

[[_2nd_order, _missing_x]]

2.006

15846

\[ {}x^{2} y^{\prime \prime }-y^{\prime } x -16 y = 0 \]

[[_Emden, _Fowler]]

1.336

15847

\[ {}x^{2} y^{\prime \prime }+3 y^{\prime } x +2 y = 0 \]

[[_Emden, _Fowler]]

1.852

15848

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \]

[[_2nd_order, _with_linear_symmetries]]

7.612

15849

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]

[[_2nd_order, _missing_x]]

1.197

15850

\[ {}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

4.325

15851

\[ {}y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

[_exact, [_1st_order, ‘_with_symmetry_[F(x),G(x)*y+H(x)]‘]]

35.405

15852

\[ {}y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

[_quadrature]

0.504

15853

\[ {}y^{\prime } = x^{2} \sin \left (x \right ) \]

[_quadrature]

0.548

15854

\[ {}y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

[_quadrature]

0.557

15855

\[ {}y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

[_quadrature]

0.289

15856

\[ {}y^{\prime }+2 y = x^{2} \]
i.c.

[[_linear, ‘class A‘]]

1.531

15857

\[ {}y^{\prime \prime }+4 y = t \]
i.c.

[[_2nd_order, _with_linear_symmetries]]

3.559

15858

\[ {}x^{2} y^{\prime \prime }+5 y^{\prime } x +4 y = 0 \]
i.c.

[[_Emden, _Fowler]]

1.601

15859

\[ {}y^{\prime } = \cos \left (x \right )^{2} \sin \left (x \right ) \]
i.c.

[_quadrature]

0.790

15860

\[ {}y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]
i.c.

[_quadrature]

0.504

15861

\[ {}y^{\prime }+t^{2} = y^{2} \]
i.c.

[_Riccati]

1.461

15862

\[ {}y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

[_rational]

0.698

15863

\[ {}y^{\prime } = y+\frac {1}{-t +1} \]

[_linear]

1.279

15864

\[ {}y^{\prime } = y^{{1}/{5}} \]
i.c.

[_quadrature]

1.529

15865

\[ {}\frac {y^{\prime }}{t} = \sqrt {y} \]
i.c.

[_separable]

4.333

15866

\[ {}y^{\prime } = 4 t^{2}-t y^{2} \]
i.c.

[_Riccati]

2.400

15867

\[ {}y^{\prime } = y \sqrt {t} \]
i.c.

[_separable]

1.454

15868

\[ {}y^{\prime } = 6 y^{{2}/{3}} \]
i.c.

[_quadrature]

1.732

15869

\[ {}t y^{\prime } = y \]

[_separable]

1.606

15870

\[ {}y^{\prime } = y \tan \left (t \right ) \]
i.c.

[_separable]

2.221

15871

\[ {}y^{\prime } = \frac {1}{t^{2}+1} \]
i.c.

[_quadrature]

0.699

15872

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

10.246

15873

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

7.036

15874

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

10.683

15875

\[ {}y^{\prime } = \sqrt {y^{2}-1} \]
i.c.

[_quadrature]

4.732

15876

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

283.710

15877

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

3.014

15878

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

7.507

15879

\[ {}y^{\prime } = \sqrt {25-y^{2}} \]
i.c.

[_quadrature]

41.872

15880

\[ {}t y^{\prime }+y = t^{3} \]
i.c.

[_linear]

1.938

15881

\[ {}t^{3} y^{\prime }+t^{4} y = 2 t^{3} \]
i.c.

[_linear]

1.509

15882

\[ {}2 y^{\prime }+t y = \ln \left (t \right ) \]
i.c.

[_linear]

1.839

15883

\[ {}y^{\prime }+y \sec \left (t \right ) = t \]
i.c.

[_linear]

2.156

15884

\[ {}y^{\prime }+\frac {y}{t -3} = \frac {1}{t -1} \]
i.c.

[_linear]

1.672

15885

\[ {}\left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2} \]
i.c.

[_linear]

1.903

15886

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

2.132

15887

\[ {}y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]
i.c.

[_linear]

2.706

15888

\[ {}t y^{\prime }+y = t \sin \left (t \right ) \]
i.c.

[_linear]

1.615

15889

\[ {}y^{\prime }+y \tan \left (t \right ) = \sin \left (t \right ) \]
i.c.

[_linear]

2.179

15890

\[ {}y^{\prime } = y^{2} \]
i.c.

[_quadrature]

1.527

15891

\[ {}y^{\prime } = t y^{2} \]
i.c.

[_separable]

2.579

15892

\[ {}y^{\prime } = -\frac {t}{y} \]
i.c.

[_separable]

6.137

15893

\[ {}y^{\prime } = -y^{3} \]
i.c.

[_quadrature]

1.977

15894

\[ {}y^{\prime } = \frac {x}{y^{2}} \]

[_separable]

2.362

15895

\[ {}\frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

[_separable]

2.268

15896

\[ {}y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

[_separable]

3.242

15897

\[ {}y^{\prime } = \frac {1+y^{2}}{y} \]

[_quadrature]

4.554

15898

\[ {}6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

[_separable]

1.859

15899

\[ {}\frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

[_separable]

2.056

15900

\[ {}4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

[_separable]

2.762