2.2.159 Problems 15801 to 15900

Table 2.319: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

15801

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.472

15802

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

3.480

15803

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ -t +2 & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

4.152

15804

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

53.443

15805

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.575

15806

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

2.669

15807

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8.086

15808

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

6.826

15809

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

36.904

15810

\[ {}\left [\begin {array}{c} x^{\prime }=6 \\ y^{\prime }=\cos \left (t \right ) \end {array}\right ] \]

system_of_ODEs

0.238

15811

\[ {}\left [\begin {array}{c} x^{\prime }=x \\ y^{\prime }=1 \end {array}\right ] \]

system_of_ODEs

0.328

15812

\[ {}\left [\begin {array}{c} x^{\prime }=0 \\ y^{\prime }=-2 y \end {array}\right ] \]

system_of_ODEs

0.275

15813

\[ {}\left [\begin {array}{c} x^{\prime }=x^{2} \\ y^{\prime }={\mathrm e}^{t} \end {array}\right ] \]

system_of_ODEs

0.027

15814

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-3 x_{1} \\ x_{2}^{\prime }=1 \end {array}\right ] \]
i.c.

system_of_ODEs

0.451

15815

\[ {}\left [\begin {array}{c} x_{1}^{\prime }=-x_{1}+1 \\ x_{2}^{\prime }=x_{2} \end {array}\right ] \]
i.c.

system_of_ODEs

0.451

15816

\[ {}\left [\begin {array}{c} x^{\prime }=-3 x+6 y \\ y^{\prime }=4 x-y \end {array}\right ] \]

system_of_ODEs

0.326

15817

\[ {}\left [\begin {array}{c} x^{\prime }=8 x-y \\ y^{\prime }=x+6 y \end {array}\right ] \]

system_of_ODEs

0.270

15818

\[ {}\left [\begin {array}{c} x^{\prime }=-x-2 y \\ y^{\prime }=x+y \end {array}\right ] \]

system_of_ODEs

0.350

15819

\[ {}\left [\begin {array}{c} x^{\prime }=4 x+2 y \\ y^{\prime }=-x+2 y \end {array}\right ] \]

system_of_ODEs

0.386

15820

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+1 \end {array}\right ] \]

system_of_ODEs

0.500

15821

\[ {}\left [\begin {array}{c} x^{\prime }=y \\ y^{\prime }=-x+\sin \left (2 t \right ) \end {array}\right ] \]

system_of_ODEs

0.570

15822

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

[[_2nd_order, _missing_x]]

1.568

15823

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

[[_2nd_order, _missing_x]]

0.744

15824

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.120

15825

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]

[[_2nd_order, _with_linear_symmetries]]

1.589

15826

\[ {}y^{\prime } = x^{2}+y^{2} \]

[[_Riccati, _special]]

0.996

15827

\[ {}y^{\prime } = \frac {x}{y} \]

[_separable]

2.582

15828

\[ {}y^{\prime } = y+3 y^{{1}/{3}} \]

[_quadrature]

1.475

15829

\[ {}y^{\prime } = \sqrt {x -y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.306

15830

\[ {}y^{\prime } = \sqrt {x^{2}-y}-x \]

[[_1st_order, _with_linear_symmetries], _dAlembert]

3.813

15831

\[ {}y^{\prime } = \sqrt {1-y^{2}} \]

[_quadrature]

38.278

15832

\[ {}y^{\prime } = \frac {1+y}{x -y} \]

[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

1.717

15833

\[ {}y^{\prime } = \sin \left (y\right )-\cos \left (x \right ) \]

[‘y=_G(x,y’)‘]

1.122

15834

\[ {}y^{\prime } = 1-\cot \left (y\right ) \]

[_quadrature]

0.805

15835

\[ {}y^{\prime } = \left (3 x -y\right )^{{1}/{3}}-1 \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.137

15836

\[ {}y^{\prime } = \sin \left (y x \right ) \]
i.c.

[‘y=_G(x,y’)‘]

0.689

15837

\[ {}y^{\prime } x +y = \cos \left (x \right ) \]

[_linear]

1.066

15838

\[ {}y^{\prime }+2 y = {\mathrm e}^{x} \]

[[_linear, ‘class A‘]]

0.911

15839

\[ {}\left (-x^{2}+1\right ) y^{\prime }+y x = 2 x \]

[_separable]

1.176

15840

\[ {}y^{\prime } = x +1 \]

[_quadrature]

0.219

15841

\[ {}y^{\prime } = x +y \]

[[_linear, ‘class A‘]]

0.818

15842

\[ {}y^{\prime } = -x +y \]

[[_linear, ‘class A‘]]

0.838

15843

\[ {}y^{\prime } = \frac {x}{2}-y+\frac {3}{2} \]

[[_linear, ‘class A‘]]

0.966

15844

\[ {}y^{\prime } = \left (-1+y\right )^{2} \]

[_quadrature]

0.336

15845

\[ {}y^{\prime } = \left (-1+y\right ) x \]

[_separable]

0.988

15846

\[ {}y^{\prime } = x^{2}-y^{2} \]

[_Riccati]

0.986

15847

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

2.080

15848

\[ {}y^{\prime } = y-x^{2} \]

[[_linear, ‘class A‘]]

0.906

15849

\[ {}y^{\prime } = x^{2}+2 x -y \]

[[_linear, ‘class A‘]]

0.866

15850

\[ {}y^{\prime } = \frac {1+y}{x -1} \]

[_separable]

1.387

15851

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]]

2.456

15852

\[ {}y^{\prime } = 1-x \]

[_quadrature]

0.220

15853

\[ {}y^{\prime } = 2 x -y \]

[[_linear, ‘class A‘]]

0.818

15854

\[ {}y^{\prime } = y+x^{2} \]

[[_linear, ‘class A‘]]

0.814

15855

\[ {}y^{\prime } = -\frac {y}{x} \]

[_separable]

1.401

15856

\[ {}y^{\prime } = 1 \]

[_quadrature]

0.387

15857

\[ {}y^{\prime } = \frac {1}{x} \]

[_quadrature]

0.233

15858

\[ {}y^{\prime } = y \]

[_quadrature]

0.419

15859

\[ {}y^{\prime } = y^{2} \]

[_quadrature]

0.385

15860

\[ {}y^{\prime } = x^{2}-y^{2} \]
i.c.

[_Riccati]

1.524

15861

\[ {}y^{\prime } = x +y^{2} \]
i.c.

[[_Riccati, _special]]

1.137

15862

\[ {}y^{\prime } = x +y \]
i.c.

[[_linear, ‘class A‘]]

1.036

15863

\[ {}y^{\prime } = 2 y-2 x^{2}-3 \]
i.c.

[[_linear, ‘class A‘]]

1.049

15864

\[ {}y^{\prime } x = 2 x -y \]
i.c.

[_linear]

2.005

15865

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

[_separable]

1.638

15866

\[ {}1+y^{2}+x y y^{\prime } = 0 \]

[_separable]

1.878

15867

\[ {}\sin \left (x \right ) y^{\prime }-y \cos \left (x \right ) = 0 \]
i.c.

[_separable]

1.974

15868

\[ {}1+y^{2} = y^{\prime } x \]

[_separable]

1.490

15869

\[ {}x \sqrt {1+y^{2}}+y y^{\prime } \sqrt {x^{2}+1} = 0 \]

[_separable]

2.651

15870

\[ {}x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0 \]
i.c.

[_separable]

2.164

15871

\[ {}{\mathrm e}^{-y} y^{\prime } = 1 \]

[_quadrature]

0.363

15872

\[ {}y \ln \left (y\right )+y^{\prime } x = 1 \]
i.c.

[_separable]

2.398

15873

\[ {}y^{\prime } = a^{x +y} \]

[_separable]

1.278

15874

\[ {}{\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0 \]

[_separable]

5.028

15875

\[ {}2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime } \]

[_separable]

2.194

15876

\[ {}{\mathrm e}^{x} \sin \left (y\right )^{3}+\left (1+{\mathrm e}^{2 x}\right ) \cos \left (y\right ) y^{\prime } = 0 \]

[_separable]

3.558

15877

\[ {}y^{2} \sin \left (x \right )+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime } = 0 \]

[_separable]

3.270

15878

\[ {}y^{\prime } = \sin \left (x -y\right ) \]

[[_homogeneous, ‘class C‘], _dAlembert]

1.997

15879

\[ {}y^{\prime } = a x +b y+c \]

[[_linear, ‘class A‘]]

0.687

15880

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

[[_homogeneous, ‘class C‘], _dAlembert]

3.114

15881

\[ {}y^{\prime } x +y = a \left (1+y x \right ) \]
i.c.

[_linear]

1.030

15882

\[ {}a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0 \]
i.c.

[_separable]

3.409

15883

\[ {}y^{\prime } = \frac {y}{x} \]
i.c.

[_separable]

1.171

15884

\[ {}\cos \left (y^{\prime }\right ) = 0 \]

[_quadrature]

0.379

15885

\[ {}{\mathrm e}^{y^{\prime }} = 1 \]

[_quadrature]

0.331

15886

\[ {}\sin \left (y^{\prime }\right ) = x \]

[_quadrature]

0.222

15887

\[ {}\ln \left (y^{\prime }\right ) = x \]

[_quadrature]

0.252

15888

\[ {}\tan \left (y^{\prime }\right ) = 0 \]

[_quadrature]

0.348

15889

\[ {}{\mathrm e}^{y^{\prime }} = x \]

[_quadrature]

0.240

15890

\[ {}\tan \left (y^{\prime }\right ) = x \]

[_quadrature]

0.302

15891

\[ {}x^{2} y^{\prime } \cos \left (y\right )+1 = 0 \]
i.c.

[_separable]

1.396

15892

\[ {}x^{2} y^{\prime }+\cos \left (2 y\right ) = 1 \]
i.c.

[_separable]

2.473

15893

\[ {}x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]
i.c.

[_separable]

2.765

15894

\[ {}\left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0 \]
i.c.

[_separable]

6.750

15895

\[ {}{\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1 \]

[_quadrature]

0.595

15896

\[ {}\left (x +1\right ) y^{\prime } = -1+y \]

[_separable]

1.292

15897

\[ {}y^{\prime } = 2 x \left (\pi +y\right ) \]

[_separable]

0.991

15898

\[ {}x^{2} y^{\prime }+\sin \left (2 y\right ) = 1 \]
i.c.

[_separable]

9.854

15899

\[ {}y^{\prime } x = y+x \cos \left (\frac {y}{x}\right )^{2} \]

[[_homogeneous, ‘class A‘], _dAlembert]

3.169

15900

\[ {}x -y+y^{\prime } x = 0 \]

[_linear]

1.094