# |
ODE |
CAS classification |
Solved? |
\[
{}y^{\prime } = \sqrt {x -y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x -y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } y = x -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 6 \,{\mathrm e}^{2 x -y}
\] |
[_separable] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = x -y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y y^{\prime } = x^{2}+2 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y^{\prime } = y+2 \sqrt {x y}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (x +2 y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{2} y^{\prime } = x^{3}+y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y+\sqrt {y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x +y+1}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = 1
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 x -y+\left (6 y-x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = f \left (a x +b y+c \right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x -y-1}{x +y+3}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y-x +7}{4 x -3 y-18}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = -\frac {y \left (2 x^{3}-y^{3}\right )}{x \left (2 y^{3}-x^{3}\right )}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime }+2 x y = x^{2}+y^{2}+1
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}x^{3} y^{\prime } = x^{2} y-y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{2} y-x^{3} y^{\prime } = y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x +y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {3 y+x}{y-3 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } y = x -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } y = x -1
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 6 \,{\mathrm e}^{2 x -y}
\] |
[_separable] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = x -y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y y^{\prime } = y^{2}+x^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y^{\prime } = y+2 \sqrt {x y}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (x +2 y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{2} y^{\prime } = x^{3}+y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y+\sqrt {y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x +y+1}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 x +3 y+\left (3 x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 x -y+\left (6 y-x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x^{2}+2 y^{2}+\left (4 x y+6 y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x^{3} y^{\prime } = x^{2} y-y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{2} y-x^{3} y^{\prime } = y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {3 y+x}{y-3 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-2 x +1}{y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {4 y-3 x}{2 x -y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = -\frac {4 x +3 y}{2 x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = y \left (-2+y\right ) \left (-1+y\right )
\] |
[_quadrature] |
✓ |
|
\[
{}3+2 x +\left (2 y-2\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {-a x -b y}{b x +c y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x -y+\left (2 y-x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x +y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x y^{3} y^{\prime } = y^{4}+x^{4}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{3}+y^{3}}{x y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x \left (x +y\right )^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +2 y}{2 x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{-2 x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x y^{2}+2 y^{3}}{x^{3}+x^{2} y+x y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{3}+x^{2} y+3 y^{3}}{x^{3}+3 x y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y y^{\prime } = x^{2}-x y+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-6 x +y-3}{2 x -y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x +y+1}{x +2 y-4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {-x +3 y-14}{x +y-2}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 x +7 y+\left (3 x +4 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}7 x +4 y+\left (4 x +3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }+y^{2}+4 x y+4 x^{2}+2 = 0
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3+t +y}
\] |
[_separable] |
✓ |
|
\[
{}t y^{\prime } = y+\sqrt {t^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (t -\sqrt {t y}\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{\frac {t}{y}} \left (-t +y\right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{\left (-t +y\right )^{2}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3+t +y}
\] |
[_separable] |
✓ |
|
\[
{}t y^{\prime } = y+\sqrt {t^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (t -\sqrt {t y}\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{\frac {t}{y}} \left (-t +y\right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{\left (-t +y\right )^{2}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}-y+x y^{\prime } = \sqrt {x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -y}{4 y+x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{\prime }-y+\sqrt {y^{2}-x^{2}} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{2}+x^{2} = x y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y+x y^{\prime } = 2 \sqrt {x y}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x +y+y^{\prime } \left (x -y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (y^{2}+x y+x^{2}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{2} \left (y^{\prime } y-x \right )+x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x +\left (x -2 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x -y+\left (y-x +1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -y+1+\left (x -y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+2 = \left (2 x +y-1\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x -y+1+\left (x -3 y-5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}6 x -3 y+6+\left (2 x -y+5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+4 = \left (2 x +2 y-1\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3 y-1+\left (2 x +3 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -2 y+3+\left (1-x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +y+\left (4 x +2 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (x -2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x +y+\left (3 y+x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}a_{1} x +b_{1} y+c_{1} +\left (b_{1} x +b_{2} y+c_{2} \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y-\left (y^{2}+x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\frac {x^{2}+3 y^{2}}{x \left (3 x^{2}+4 y^{2}\right )}+\frac {\left (2 x^{2}+y^{2}\right ) y^{\prime }}{y \left (3 x^{2}+4 y^{2}\right )} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\frac {x^{2}-y^{2}}{x \left (2 x^{2}+y^{2}\right )}+\frac {\left (x^{2}+2 y^{2}\right ) y^{\prime }}{y \left (2 x^{2}+y^{2}\right )} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y+\left (2 x -3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -2 y+1+\left (y-2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -3 y = \left (3 y-x +2\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y+\left (-2 y+3 x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{\prime }-y-\sqrt {y^{2}+x^{2}} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
|
\[
{}y \cos \left (\frac {x}{y}\right )-\left (y+x \cos \left (\frac {x}{y}\right )\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x -2 y+3 = \left (x -2 y+1\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y^{\prime } y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = y^{\prime } x \left (y^{\prime }+1\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = x +3 \ln \left (y^{\prime }\right )
\] |
[_separable] |
✓ |
|
\[
{}y \left (1+{y^{\prime }}^{2}\right ) = 2
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (-1+{y^{\prime }}^{2}\right ) = 2 y^{\prime } y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 x -2 y^{\prime } y+x {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2} = 3 x y^{\prime }+y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}8 x +1 = y {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (1+{y^{\prime }}^{2}\right ) x = \left (x +y\right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y+2 x y^{\prime } = x {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x +2 y^{\prime } y = x {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 x -2 y^{\prime } y+x {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{3} = y^{\prime } y+1
\] |
[_dAlembert] |
✓ |
|
\[
{}y \left (1+{y^{\prime }}^{2}\right ) = 2 x y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x +x {y^{\prime }}^{2} = 2 y^{\prime } y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x = y^{\prime } y+{y^{\prime }}^{2}
\] |
[_dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2}+2 x y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = y^{\prime } x \left (y^{\prime }+1\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x {y^{\prime }}^{3}+1 = y {y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{5}+2 x y^{\prime } = y
\] |
[_dAlembert] |
✓ |
|
\[
{}\frac {1}{{y^{\prime }}^{2}}+x y^{\prime } = 2 y
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 y = 3 x y^{\prime }+4+2 \ln \left (y^{\prime }\right )
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{x +2 y+1}
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = -\frac {x +y}{3 x +3 y-4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5 x +y-7\right ) y^{\prime } = 3 x +3 y+3
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}{\mathrm e}^{x +y} y^{\prime }-1 = 0
\] |
[_separable] |
✓ |
|
\[
{}-y+x y^{\prime } = \sqrt {9 x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-y^{2}\right )-x \left (y^{2}+x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{x +y} y^{\prime }-1 = 0
\] |
[_separable] |
✓ |
|
\[
{}-y+x y^{\prime } = \sqrt {9 x^{2}+y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime }+y \ln \left (x \right ) = y \ln \left (y\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = x \tan \left (\frac {y}{x}\right )+y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -y}{4 y+x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y-\sqrt {y^{2}+x^{2}}}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (4 x +y+2\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \sin \left (3 x -3 y+1\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\frac {y^{\prime }}{y}-\frac {2 \ln \left (y\right )}{x} = \frac {1-2 \ln \left (x \right )}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y-x = {y^{\prime }}^{2} \left (1-\frac {2 y^{\prime }}{3}\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{3}+y^{3}-x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -2 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x -y+1}{3 y-x +5}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}\left (y-1+x \right ) y^{\prime } = x +1-y
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}-y^{2}+x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x +1-y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+4}{x +y-6}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x y-x^{2}\right ) y^{\prime } = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
|
\[
{}x +y+y^{\prime } \left (x -y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x \cos \left (\frac {y}{x}\right )^{2}-y+x y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (1-{\mathrm e}^{-\frac {y}{x}}\right ) y^{\prime }+1-\frac {y}{x} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2}-x y+y^{2}-x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y+2 = \left (2 x +y-4\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x -y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (x +1\right )^{2}+\left (4 y+1\right )^{2}+8 x y+1
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}x y^{\prime } \left (y^{\prime }+2\right ) = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y+x y^{\prime } = 4 \sqrt {y^{\prime }}
\] |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
|
\[
{}2 x y^{\prime }-y = \ln \left (y^{\prime }\right )
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 \sqrt {x y}-y-x y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{\frac {x y^{\prime }}{y}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}-y+x y^{\prime } = x \tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}4 x -2 y^{\prime } y+x {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{3}-3 {y^{\prime }}^{2}+x = y
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = 3-3 x +3 y+\left (x -y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (3+x -4 y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = \left (1+4 x +9 y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}y^{\prime } = a +b \cos \left (A x +B y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = f \left (a +b x +c y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}3 y^{\prime } = x +\sqrt {x^{2}-3 y}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y+\sqrt {y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y+a \sqrt {y^{2}+b^{2} x^{2}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime }+x -y+x \cos \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y-x \cos \left (\frac {y}{x}\right )^{2}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y+x \sin \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y-x \tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = \left (1+\ln \left (x \right )-\ln \left (y\right )\right ) y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y-2 x \tanh \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x^{2} y^{\prime } = \left (x +a y\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y^{\prime } = \left (a x +b y\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x -a \right )^{2} y^{\prime }+k \left (x +y-a \right )^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _Riccati] |
✓ |
|
\[
{}a \,x^{2} y^{\prime } = x^{2}+a x y+b^{2} y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Riccati] |
✓ |
|
\[
{}x^{3} y^{\prime } = y \left (2 x^{2}+y^{2}\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{3} y^{\prime } = \left (x^{2}-y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x^{3} y^{\prime } = \left (3 x^{2}+y^{2} a \right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } y = \sqrt {y^{2}+a^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } y = \sqrt {y^{2}-a^{2}}
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } \left (x -y\right ) = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = x -y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } \left (x -y\right ) = \left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2+x +y\right ) y^{\prime } = 1-x -y
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3-x -y\right ) y^{\prime } = 1+x -3 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (y-x +3\right ) y^{\prime } = 11-4 x +3 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 x -y+2\right ) y^{\prime }+3+6 x -3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3+2 x -y\right ) y^{\prime }+2 = 0
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (4+2 x -y\right ) y^{\prime }+5+x -2 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5-2 x -y\right ) y^{\prime }+4-x -2 y = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (1-3 x +y\right ) y^{\prime } = 2 x -2 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 x -y\right ) y^{\prime }+2 x -5 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (6-4 x -y\right ) y^{\prime } = 2 x -y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (1+5 x -y\right ) y^{\prime }+5+x -5 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a +b x +y\right ) y^{\prime }+a -b x -y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -2 y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -2 y\right ) y^{\prime }+2 x +y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -2 y+1\right ) y^{\prime } = 1+2 x -y
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +2 y+1\right ) y^{\prime }+1-x -2 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +2 y+1\right ) y^{\prime }+7+x -4 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3+2 x -2 y\right ) y^{\prime } = 1+6 x -2 y
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (1-4 x -2 y\right ) y^{\prime }+2 x +y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (6 x -2 y\right ) y^{\prime } = 2+3 x -y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (19+9 x +2 y\right ) y^{\prime }+18-2 x -6 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -3 y\right ) y^{\prime }+4+3 x -y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4-x -3 y\right ) y^{\prime }+3-x -3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 x +3 y+2\right ) y^{\prime } = 1-2 x -3 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5-2 x -3 y\right ) y^{\prime }+1-2 x -3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (1+9 x -3 y\right ) y^{\prime }+2+3 x -y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3+2 x +4 y\right ) y^{\prime } = x +2 y+1
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5+2 x -4 y\right ) y^{\prime } = x -2 y+3
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5+3 x -4 y\right ) y^{\prime } = 2+7 x -3 y
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 \left (1-x -y\right ) y^{\prime }+2-x = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (11-11 x -4 y\right ) y^{\prime } = 62-8 x -25 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (6+3 x +5 y\right ) y^{\prime } = 2+x +7 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5-x +6 y\right ) y^{\prime } = 3-x +4 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 \left (x +2 y\right ) y^{\prime } = 1-x -2 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3-3 x +7 y\right ) y^{\prime }+7-7 x +3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (8+5 x -12 y\right ) y^{\prime } = 3+2 x -5 y
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (140+7 x -16 y\right ) y^{\prime }+25+8 x +y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3+9 x +21 y\right ) y^{\prime } = 45+7 x -5 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a x +b y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a x +b y\right ) y^{\prime }+b x +a y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a x +b y\right ) y^{\prime } = b x +a y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y y^{\prime } = x^{2}-x y+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x y y^{\prime }+x^{2} {\mathrm e}^{-\frac {2 y}{x}}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x \left (x -y\right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}2 x y y^{\prime } = y^{2}+x^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (x -2 y\right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}a x y y^{\prime } = y^{2}+x^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}a x y y^{\prime }+x^{2}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} \left (x -2 y\right ) y^{\prime } = 2 x^{3}-4 x y^{2}+y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{2} \left (4 x -3 y\right ) y^{\prime } = \left (6 x^{2}-3 x y+2 y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}8 x^{3} y y^{\prime }+3 x^{4}-6 x^{2} y^{2}-y^{4} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x -y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+2 x y-y^{2}\right ) y^{\prime }+x^{2}-2 x y+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 x^{2}+4 x y-y^{2}\right ) y^{\prime } = x^{2}-4 x y-2 y^{2}
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x +y\right )^{2} y^{\prime } = 4 \left (3 x +2 y\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 x^{2}+3 y^{2}\right ) y^{\prime }+x \left (3 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{2}+x y+y^{2} a \right ) y^{\prime } = a \,x^{2}+x y+y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (a \,x^{2}+2 x y-y^{2} a \right ) y^{\prime }+x^{2}-2 a x y-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (a \,x^{2}+2 b x y+c y^{2}\right ) y^{\prime }+k \,x^{2}+2 a x y+b y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x \left (2 x^{2}+y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-x y+y^{2}\right ) y^{\prime }+\left (y^{2}+x y+x^{2}\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-x y-y^{2}\right ) y^{\prime } = \left (x^{2}+x y-y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (-2 y^{2}+x^{2}\right ) y^{\prime } = \left (2 x^{2}-y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}+2 y^{2}\right ) y^{\prime } = \left (2 x^{2}+3 y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime } = x^{2} y-y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{2}-6 y^{2}\right ) y^{\prime } = 4 \left (x^{2}+3 y^{2}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{3}-y^{3}\right ) y^{\prime }+x^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{3}+y^{3}\right ) y^{\prime }+x^{2} \left (a x +3 y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+y^{2}\right ) y y^{\prime }+x \left (x^{2}+3 y^{2}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}2 y^{\prime } y^{3} = x^{3}-x y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+2 y^{2}\right ) y y^{\prime }+x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (5 x^{2}+2 y^{2}\right ) y y^{\prime }+x \left (x^{2}+5 y^{2}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (x^{3}+a y^{3}\right ) y^{\prime } = x^{2} y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (2 x^{3}+y^{3}\right ) y^{\prime } = \left (2 x^{3}-x^{2} y+y^{3}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (2 x^{3}-y^{3}\right ) y^{\prime } = \left (x^{3}-2 y^{3}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{3}+3 x^{2} y+y^{3}\right ) y^{\prime } = \left (3 x^{2}+y^{2}\right ) y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \left (x^{3}-2 y^{3}\right ) y^{\prime } = \left (2 x^{3}-y^{3}\right ) y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (a \,x^{3}+\left (a x +b y\right )^{3}\right ) y y^{\prime }+x \left (\left (a x +b y\right )^{3}+b y^{3}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x -2 \sqrt {x y}\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x \left (x -y \tan \left (\frac {y}{x}\right )\right ) y^{\prime }+\left (x +y \tan \left (\frac {y}{x}\right )\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} = x -y
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime }+a \left (x -y\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+x y^{\prime }+x -y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 \left (1-x \right ) y^{\prime }-2 x +2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+3 x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime } y-2 x = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a y y^{\prime }-a x = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-a y y^{\prime }-a x = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} = {\mathrm e}^{4 x -2 y} \left (y^{\prime }-1\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}3 {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}4 {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x -2 y} y^{\prime }-{\mathrm e}^{2 x -2 y} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2} = y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+x -2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+y^{\prime } = y
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+2 y^{\prime }-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+y^{\prime } y+a = 0
\] |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-y^{\prime } y+a x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-y^{\prime } y+a y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-\left (3 x -y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+a +b x -y-b y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+a = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+a x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-a y y^{\prime }+b = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (x +1\right ) {y^{\prime }}^{2} = y
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2}-3 y^{\prime } y+3 = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2}+4 y^{\prime } y = 1
\] |
[[_homogeneous, ‘class G‘], _dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+a \left (-a +1\right ) x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2} = a
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2} = a^{2} x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 a x y^{\prime }-a y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-\left (-2 b x +a \right ) y^{\prime }-b y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+y = a
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +y\right ) {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 x -y\right ) {y^{\prime }}^{2}-2 \left (1-x \right ) y^{\prime }+2-y = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 y {y^{\prime }}^{2}+\left (5-4 x \right ) y^{\prime }+2 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2} = a^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}-a^{2}+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y\right )^{2} {y^{\prime }}^{2}-\left (x^{2}-x y-2 y^{2}\right ) y^{\prime }-\left (x -y\right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a^{2}-\left (x -y\right )^{2}\right ) {y^{\prime }}^{2}+2 a^{2} y^{\prime }+a^{2}-\left (x -y\right )^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x^{2}-4 y^{2}\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-4 x^{2}+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}a^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) {y^{\prime }}^{2}+2 a \,b^{2} c y^{\prime }+c^{2} \left (b^{2}-\left (c x -a y\right )^{2}\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}4 x^{2} y^{2} {y^{\prime }}^{2} = \left (y^{2}+x^{2}\right )^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}{y^{\prime }}^{3}-x y^{\prime }+a y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+{\mathrm e}^{-2 y+3 x} \left (y^{\prime }-1\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}-a {y^{\prime }}^{2}+b y+a b x = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}8 {y^{\prime }}^{3}+12 {y^{\prime }}^{2} = 27 x +27 y
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 x {y^{\prime }}^{3}-3 y {y^{\prime }}^{2}-x = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{3} y-3 x y^{\prime }+2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}\left (x -y\right ) \sqrt {y^{\prime }} = a \left (y^{\prime }+1\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} \left (x +\sin \left (y^{\prime }\right )\right ) = y
\] |
[_dAlembert] |
✓ |
|
\[
{}\ln \left (y^{\prime }\right )+4 x y^{\prime }-2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}a \left (\ln \left (y^{\prime }\right )-y^{\prime }\right )-x +y = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\ln \left (\cos \left (y^{\prime }\right )\right )+y^{\prime } \tan \left (y^{\prime }\right ) = y
\] |
[_dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x +y-1}{4 x +2 y+5}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{2} \left (1+{y^{\prime }}^{2}\right ) = R^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y-x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime }-y-\sqrt {y^{2}+x^{2}} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3-3 x +7 y\right ) y^{\prime }+7-7 x +3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}-y+x y^{\prime } = \sqrt {y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (7 x +5 y\right ) y^{\prime }+10 x +8 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}{y^{\prime }}^{2}+\frac {2 x y^{\prime }}{y}-1 = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y-2 x y^{\prime } = x {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}2 x^{2} y+y^{3}+\left (x y^{2}-2 x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 y \,{\mathrm e}^{\frac {x}{y}}+\left (y-2 x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x \,{\mathrm e}^{\frac {y}{x}}-y \sin \left (\frac {y}{x}\right )+x \sin \left (\frac {y}{x}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y-1+\left (2 x +2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (2 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+\left (3 x +6 y+3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+\left (y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (3 x +3 y-4\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x +2 y+3-\left (x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y+7+\left (2 x +y+3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = {\mathrm e}^{x}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x -y\right )^{2} y^{\prime } = 4
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}-y+x y^{\prime } = \sqrt {y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x +2 y+1\right ) y^{\prime }+4 x +3 y+2 = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x^{2}-y^{2}\right ) y^{\prime } = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}2 x y y^{\prime }+3 x^{2}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}2 y^{\prime } y^{3}+x y^{2}-x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } \left (x -y\right )+x +y+1 = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x +y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}-\tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (2 x +y\right ) y^{\prime }-x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }-\sin \left (x +y\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x^{3}+x y^{2}\right ) y^{\prime } = 2 y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 y-x \right ) y^{\prime } = 2 x +y
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{3}+y^{3} = 3 x y^{2} y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y-3 x +\left (3 x +4 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x^{3}+3 x y^{2}\right ) y^{\prime } = y^{3}+3 x^{2} y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x +3 y-4\right ) y^{\prime } = -x -y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (3-3 x +7 y\right ) y^{\prime }+7-7 x +3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-2 y+3 x}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x -2 y+1}{2 x -4 y}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x^{3} y^{\prime } = y \left (3 x^{2}+y^{2}\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x +y+1+\left (2 x +2 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+\left (2 x +3 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y^{\prime }-2 y = \sqrt {4 y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3-3 x +7 y\right ) y^{\prime }+7-7 x +3 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{3}+y^{3}+3 x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _Bernoulli] |
✓ |
|
\[
{}3 x +2 y+1-\left (3 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = -2 \left (2 x +3 y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+4 x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}8 y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-y^{\prime } y-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y = \left (y^{\prime }+1\right ) x +{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-x y^{\prime }+3 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+4 x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 y = {y^{\prime }}^{2}+4 x y^{\prime }
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y
\] |
[_quadrature] |
✓ |
|
\[
{}\frac {1}{\sqrt {x}}+\frac {y^{\prime }}{\sqrt {y}} = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}}
\] |
[_separable] |
✓ |
|
\[
{}z^{\prime } = 10^{x +z}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x +2 y\right ) y^{\prime } = 1
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x -y-1\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime }+\sin \left (x +y\right )^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = 2 \sqrt {2 x +y+1}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (x +y+1\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}\left (y^{2}+x^{2}\right ) y^{\prime } = 2 x y
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}-y+x y^{\prime } = x \tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}-y+x y^{\prime } = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y \cos \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y+\sqrt {x y}-x y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}-y+x y^{\prime } = y^{\prime } y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y+\sqrt {y^{2}-x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y \ln \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}-y+x y^{\prime } = \sqrt {y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y-2}{y-x -4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y-x +5}{2 x -y-4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -y-1+\left (y-x +2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 y+x \right ) y^{\prime } = 2 x +3 y-5
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y+2 = \left (2 x +y-4\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x -2 y+5}{y-2 x -4}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3+\left (2 y-2\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}x y^{\prime }-2 \sqrt {x y} = y
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y+\sqrt {y^{2}+x^{2}}-x y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x^{2}+y^{2}-2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2}-y^{2}+2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x -y+2}{y-1+x}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+1}{2 x +2 y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y y^{\prime } = y^{2}+x^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}}{x y-x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}1+y^{2}+y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x -y-\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{3}+y^{3}-x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+4}{x +y-6}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y-1+x}{x +4 y+2}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \sin \left (\frac {y}{x}\right )-\cos \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{\frac {x}{y}}-\frac {y y^{\prime }}{x} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y \tan \left (\frac {y}{x}\right )}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}+x^{2}}{x^{2}-y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{2}+2 y^{2}}{-2 y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 x -y\right ) {y^{\prime }}^{2}+6 y^{\prime } \left (x -y\right )+2 x -5 y = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (y^{2}+x^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+\left (y-x \right ) y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y \left (y^{2}+x^{2}\right ) \left (-1+{y^{\prime }}^{2}\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+4 x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+4 x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{2}+x y^{\prime }-2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+2 x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2}-3 y^{\prime } y+3 = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}-x y^{\prime }+2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}5 {y^{\prime }}^{2}+3 x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+3 x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}5 {y^{\prime }}^{2}+6 x y^{\prime }-2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}-\left (x +1\right ) y y^{\prime }+x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{4}+x y^{\prime }-3 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}-2 x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -y}{4 y+x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y^{\prime }+y^{2} = x y y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 t +3 x+\left (x+2\right ) x^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } y = 1-x {y^{\prime }}^{3}
\] |
[_dAlembert] |
✓ |
|
\[
{}f^{\prime } = \frac {1}{f}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime }+\sin \left (x -y\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}} = -x
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-\frac {y}{x}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} = x +y
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2} = \frac {y}{x}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {1+6 x +y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (\pi +x +7 y\right )^{{7}/{2}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (a +b x +c y\right )^{6}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = 10+{\mathrm e}^{x +y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime }+a \sin \left (\alpha y+\beta x \right )+b = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime }-f \left (a x +b y\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime }-y-\sqrt {y^{2}+x^{2}} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x y^{\prime }+a \sqrt {y^{2}+x^{2}}-y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime }+x \cos \left (\frac {y}{x}\right )-y+x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime }+x \tan \left (\frac {y}{x}\right )-y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } y-\sqrt {y^{2} a +b} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } y-x \,{\mathrm e}^{\frac {x}{y}} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (x +2 y+1\right ) y^{\prime }+1-x -2 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 y-x \right ) y^{\prime }-y-2 x = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 y-6 x \right ) y^{\prime }-y+3 x +2 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 y-2 x -3\right ) y^{\prime }+2 y-x -1 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 y-3 x -5\right ) y^{\prime }-3 y+7 x +2 = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 y+11 x -11\right ) y^{\prime }-25 y-8 x +62 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (12 y-5 x -8\right ) y^{\prime }-5 y+2 x +3 = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (a y+b x +c \right ) y^{\prime }+\alpha y+\beta x +\gamma = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x y y^{\prime }-y^{2}+a \,x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (2 x^{2} y-x^{3}\right ) y^{\prime }+y^{3}-4 x y^{2}+2 x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (y^{2}+x^{2}\right ) y^{\prime }+2 x \left (2 x +y\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime }-a^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (3 x^{2}+2 x y+4 y^{2}\right ) y^{\prime }+2 x^{2}+6 x y+y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (y^{2} a +2 b x y+c \,x^{2}\right ) y^{\prime }+b y^{2}+2 c x y+d \,x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}x \left (y^{2}+x y-x^{2}\right ) y^{\prime }-y^{3}+x y^{2}+x^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x \left (5 x^{2}+y^{2}\right ) y^{\prime }+y^{3}-x^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y^{3}-x^{3}\right ) y^{\prime }-x^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 y^{3}+5 x^{2} y\right ) y^{\prime }+5 x y^{2}+x^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x^{3}+6 x^{2} y-3 x y^{2}+20 y^{3}\right ) y^{\prime }+4 x^{3}+9 x^{2} y+6 x y^{2}-y^{3} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\left (2 x y^{3}-x^{4}\right ) y^{\prime }+2 x^{3} y-y^{4} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y \left (y^{3}-2 x^{3}\right ) y^{\prime }+\left (2 y^{3}-x^{3}\right ) x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y \left (\left (b x +a y\right )^{3}+b \,x^{3}\right ) y^{\prime }+x \left (\left (b x +a y\right )^{3}+a y^{3}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (f \left (x +y\right )+1\right ) y^{\prime }+f \left (x +y\right ) = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
|
\[
{}\left (1+\sqrt {x +y}\right ) y^{\prime }+1 = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 y^{\prime } y-2 x = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+a y y^{\prime }-b x -c = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}3 {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+x -2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime }-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+4 y^{\prime }-2 y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+y^{\prime } y+a = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+\left (y-3 x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-y^{\prime } y+a y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+2 y^{\prime } y-x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+a = 0
\] |
[[_homogeneous, ‘class G‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y-x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+4 x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+a y y^{\prime }+b x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+y^{2}-a \left (a -1\right ) x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-1 = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 x y^{\prime }-9 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-4 x y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right ) {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (-2 x +y\right ) {y^{\prime }}^{2}-2 \left (x -1\right ) y^{\prime }+y-2 = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 y {y^{\prime }}^{2}-\left (4 x -5\right ) y^{\prime }+2 y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}-a^{2}+y^{2} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}\left (y^{2}-a^{2} x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+\left (-a^{2}+1\right ) x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (y-x \right )^{2} \left (1+{y^{\prime }}^{2}\right )-a^{2} \left (y^{\prime }+1\right )^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (a y-b x \right )^{2} \left (a^{2} {y^{\prime }}^{2}+b^{2}\right )-c^{2} \left (a y^{\prime }+b \right )^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+a {y^{\prime }}^{2}+b y+a b x = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}-x +3 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}8 x {y^{\prime }}^{3}-12 y {y^{\prime }}^{2}+9 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}2 {y^{\prime }}^{3} y-y {y^{\prime }}^{2}+2 x y^{\prime }-x = 0
\] |
[_quadrature] |
✓ |
|
\[
{}{y^{\prime }}^{4}+3 \left (x -1\right ) {y^{\prime }}^{2}-3 \left (2 y-1\right ) y^{\prime }+3 x = 0
\] |
unknown |
✓ |
|
\[
{}\sqrt {1+{y^{\prime }}^{2}}+x {y^{\prime }}^{2}+y = 0
\] |
[_dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x^{3}+3 a \,x^{2}+3 a^{2} x +a^{3}+x y^{2}+y^{2} a +y^{3}}{\left (x +a \right )^{3}}
\] |
[[_homogeneous, ‘class C‘], _rational, _Abel] |
✓ |
|
\[
{}y^{\prime } = \frac {-b^{3}+6 b^{2} x -12 b \,x^{2}+8 x^{3}-4 b y^{2}+8 x y^{2}+8 y^{3}}{\left (2 x -b \right )^{3}}
\] |
[[_homogeneous, ‘class C‘], _rational, _Abel] |
✓ |
|
\[
{}y^{\prime } = \frac {-125+300 x -240 x^{2}+64 x^{3}-80 y^{2}+64 x y^{2}+64 y^{3}}{\left (4 x -5\right )^{3}}
\] |
[[_homogeneous, ‘class C‘], _rational, _Abel] |
✓ |
|
\[
{}y^{\prime } = \frac {b^{3}+y^{2} b^{3}+2 y b^{2} a x +x^{2} b \,a^{2}+y^{3} b^{3}+3 y^{2} b^{2} a x +3 y b \,a^{2} x^{2}+a^{3} x^{3}}{b^{3}}
\] |
[[_homogeneous, ‘class C‘], _Abel] |
✓ |
|
\[
{}y^{\prime } = \frac {\alpha ^{3}+y^{2} \alpha ^{3}+2 y \alpha ^{2} \beta x +\alpha \,\beta ^{2} x^{2}+y^{3} \alpha ^{3}+3 y^{2} \alpha ^{2} \beta x +3 y \alpha \,\beta ^{2} x^{2}+\beta ^{3} x^{3}}{\alpha ^{3}}
\] |
[[_homogeneous, ‘class C‘], _Abel] |
✓ |
|
\[
{}y^{\prime } = \frac {a^{3}+y^{2} a^{3}+2 y a^{2} b x +a \,b^{2} x^{2}+y^{3} a^{3}+3 y^{2} a^{2} b x +3 y a \,b^{2} x^{2}+b^{3} x^{3}}{a^{3}}
\] |
[[_homogeneous, ‘class C‘], _Abel] |
✓ |
|
\[
{}y^{\prime } = f \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } y-y = A
\] |
[_quadrature] |
✓ |
|
\[
{}\left (A y+B x +a \right ) y^{\prime }+B y+k x +b = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (y+a x +b \right ) y^{\prime } = \alpha y+\beta x +\gamma
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {y^{2}-2 x^{2}}{x y^{2}-x^{3}}+\frac {\left (2 y^{2}-x^{2}\right ) y^{\prime }}{y^{3}-x^{2} y} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\frac {1}{\sqrt {y^{2}+x^{2}}}+\left (\frac {1}{y}-\frac {x}{y \sqrt {y^{2}+x^{2}}}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}6 x -2 y+1+\left (2 y-2 x -3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x^{2} y+3 y^{3}-\left (x^{3}+2 x y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +y-\left (4 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}+y^{2}-2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{2}-x^{2}+2 m y x +\left (m y^{2}-m \,x^{2}-2 x y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime }-1 = 0
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (y-x \right )^{2} y^{\prime } = 1
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (y-x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}-y+x y^{\prime } = \sqrt {y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x -2 y+5+\left (4+2 x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3 y-1+\left (2 x +3 y-5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y-x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}2 x y^{\prime }-y+\ln \left (y^{\prime }\right ) = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y-x = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y-x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{2} \left (1+{y^{\prime }}^{2}\right ) = a^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = \left (x +1\right ) {y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y-x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}8 \left (y^{\prime }+1\right )^{3} = 27 \left (x +y\right ) \left (1-y^{\prime }\right )^{3}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y
\] |
[_quadrature] |
✓ |
|
\[
{}\left (2 u+1\right ) u^{\prime }-t -1 = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime }+y+\frac {1}{y} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x^{\prime } = {\mathrm e}^{t +x}
\] |
[_separable] |
✓ |
|
\[
{}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}3 x +2 y+\left (2 x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x \tan \left (\frac {y}{x}\right )+y-x y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}2 x -5 y+\left (4 x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+\left (2 x -y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x -y-\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x -5 y+\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -7 y}{3 y-8 x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x^{2}+y^{2}}{2 x y-x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}x^{2}+y^{2}-2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x +7 y}{2 x -2 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y^{\prime }+x y = \frac {y^{3}}{x}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}5 x +2 y+1+\left (2 x +y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x -y+1-\left (6 x -2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}10 x -4 y+12-\left (x +5 y+3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}6 x +4 y+1+\left (4 x +2 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3 y+1+\left (4 x +6 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}4 x +3 y+1+\left (x +y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{\prime } = -x \left (-x+1\right ) \left (2-x\right )
\] |
[_quadrature] |
✓ |
|
\[
{}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x y^{\prime } = y+\sqrt {y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {2 y-x -4}{2 x -y+5}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y = 5 x y^{\prime }-{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y \left (1+{y^{\prime }}^{2}\right ) = a
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y-3}{y-x +1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{2}-2 x y^{\prime }+y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x +y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } y = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y-x +\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}-y+x y^{\prime } = \sqrt {y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}8 y+10 x +\left (7 x +5 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 \sqrt {s t}-s+t s^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{2} y^{\prime } = x^{3}+y^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +2 y+1-\left (4 y+2 x +3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {y-x y^{\prime }}{\sqrt {y^{2}+x^{2}}} = m
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y+\frac {x}{y^{\prime }} = \sqrt {y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = 2 x y^{\prime }+{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = \left (y^{\prime }+1\right ) x +{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y = y {y^{\prime }}^{2}+2 x y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}+{y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }+\frac {1}{2 y} = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \ln \left (x +y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x -y}{3 y+x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{y-x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \sqrt {\frac {y-4}{x}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}2 y^{\prime } y = 1
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{y-x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{y-x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{y-x}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {1-y^{2}}{y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = y \left (-1+y\right ) \left (y-3\right )
\] |
[_quadrature] |
✓ |
|
\[
{}\left (y-2\right ) y^{\prime } = x -3
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x +y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{2 x -3 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{\left (3 x +3 y+2\right )^{2}}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {\left (-2 y+3 x \right )^{2}+1}{-2 y+3 x}+\frac {3}{2}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\cos \left (-4 y+8 x -3\right ) y^{\prime } = 2+2 \cos \left (-4 y+8 x -3\right )
\] |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\frac {x}{y}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x -y}{x +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\frac {x^{2}}{y^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}3 y^{\prime } = -2+\sqrt {2 x +3 y+4}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = 4+\frac {1}{\sin \left (4 x -y\right )}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (y-x \right ) y^{\prime } = 1
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x +y\right ) y^{\prime } = y
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 x y+2 x^{2}\right ) y^{\prime } = x^{2}+2 x y+2 y^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y^{\prime } = 2 \sqrt {2 x +y-3}-2
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = 2 \sqrt {2 x +y-3}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}-y+x y^{\prime } = \sqrt {x y+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (x -y+3\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}4 x^{3} y+\left (x^{4}-y^{4}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x +y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{3}+y^{3}+x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x +2 y}{x +2 y+3}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}1-\left (x +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (y-x +3\right )^{2} \left (y^{\prime }-1\right ) = 1
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{4 x +3 y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \tan \left (6 x +3 y+1\right )-2
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{4 x +3 y}
\] |
[_separable] |
✓ |
|
\[
{}2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {1+y^{2}}{y}
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{2 y+10 t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{3 y+2 t}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sqrt {\frac {y}{t}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{t -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{2 x -y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+3}{3 x +3 y+1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {x -y+2}{2 x -2 y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \left (x +y-4\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}-1+3 y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}-\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _dAlembert] |
✓ |
|
\[
{}\frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}t^{3}+y^{3}-t y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {t +4 y}{4 t +y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y+\left (y+t \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y+2 \sqrt {t^{2}+y^{2}}-t y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{2} = \left (t y-4 t^{2}\right ) y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}y-\left (3 \sqrt {t y}+t \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}\left (t^{2}-y^{2}\right ) y^{\prime }+y^{2}+t y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}t y y^{\prime }-t^{2} {\mathrm e}^{-\frac {y}{t}}-y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {1}{\frac {2 y \,{\mathrm e}^{-\frac {t}{y}}}{t}+\frac {t}{y}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}t y^{\prime }-y-\sqrt {t^{2}+y^{2}} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{3}-t^{3}-t y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}t -2 y+1+\left (4 t -3 y-6\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}5 t +2 y+1+\left (2 t +y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 t -y+1-\left (6 t -2 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 t +3 y+1+\left (4 t +6 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y = -t y^{\prime }+\frac {{y^{\prime }}^{5}}{5}
\] |
[_dAlembert] |
✓ |
|
\[
{}y = t {y^{\prime }}^{2}+3 {y^{\prime }}^{2}-2 {y^{\prime }}^{3}
\] |
[_dAlembert] |
✓ |
|
\[
{}y = t \left (2-y^{\prime }\right )+2 {y^{\prime }}^{2}+1
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}3 t +\left (t -4 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y-t +\left (y+t \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}r^{\prime } = \frac {r^{2}+t^{2}}{r t}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 x -y-2+\left (2 y-x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x -y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {x -y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y+1}{x -y}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \cos \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = a^{x +y}
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y+x \cos \left (\frac {y}{x}\right )^{2}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y \left (\ln \left (y\right )-\ln \left (x \right )\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}x y^{\prime } = y+\sqrt {y^{2}-x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y-x +\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y-2+\left (x -y+4\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (x -y-2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+\left (y-1+x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x y^{2} y^{\prime }-2 y^{3} = x^{3}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x \left (2 x^{2}+y^{2}\right )+y \left (x^{2}+2 y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}3 x^{2} y+y^{3}+\left (x^{3}+3 x y^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{\frac {y^{\prime }}{y}}
\] |
[_quadrature] |
✓ |
|
\[
{}y = 2 x y^{\prime }+\ln \left (y^{\prime }\right )
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y = \left (y^{\prime }+1\right ) x +{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y = 2 x y^{\prime }+\sin \left (y^{\prime }\right )
\] |
[_dAlembert] |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}-\frac {1}{y^{\prime }}
\] |
[_dAlembert] |
✓ |
|
\[
{}y = \frac {3 x y^{\prime }}{2}+{\mathrm e}^{y^{\prime }}
\] |
[_dAlembert] |
✓ |
|
\[
{}8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y = {y^{\prime }}^{2}-x y^{\prime }+x
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{2} {y^{\prime }}^{2}+y^{2} = 1
\] |
[_quadrature] |
✓ |
|
\[
{}3 x {y^{\prime }}^{2}-6 y^{\prime } y+x +2 y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \left (x -y\right )^{2}+1
\] |
[[_homogeneous, ‘class C‘], _Riccati] |
✓ |
|
\[
{}x^{3}-3 x y^{2}+\left (y^{3}-3 x^{2} y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x^{2}+y^{2}-x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x -y+2+\left (x -y+3\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }-1 = {\mathrm e}^{x +2 y}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (3 x +3 y+a^{2}\right ) y^{\prime } = 4 x +4 y+b^{2}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5 x -7 y+1\right ) y^{\prime }+y-1+x = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x +y+1+\left (2 x +2 y-1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime }+x {y^{\prime }}^{2}-y = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {3-2 x}{y}
\] |
[_separable] |
✓ |
|
\[
{}2 x +3+\left (2 y-2\right ) y^{\prime } = 0
\] |
[_separable] |
✓ |
|
\[
{}y^{\prime } = -\frac {4 x +2 y}{2 x +3 y}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}2 x -y+\left (2 y-x \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{3 x^{2} y+y^{3}} = 1
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{4}+2 x y^{3}-3 x^{2} y^{2}-2 x^{3} y}{2 x^{2} y^{2}-2 x^{3} y-2 x^{4}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {2 x y}{y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x}
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}3 y-7 x +7 = \left (3 x -7 y-3\right ) y^{\prime }
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +2 y+1\right ) y^{\prime } = 4 y+2 x +3
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y \left (1+{y^{\prime }}^{2}\right ) = 2 \alpha
\] |
[_quadrature] |
✓ |
|
\[
{}x = y^{\prime } y+a {y^{\prime }}^{2}
\] |
unknown |
✓ |
|
\[
{}y = x {y^{\prime }}^{2}+{y^{\prime }}^{3}
\] |
unknown |
✓ |
|
\[
{}{y^{\prime }}^{2}+2 x y^{\prime }+2 y = 0
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y-x}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \sqrt {y-x}+1
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = y \ln \left (y\right )^{2}
\] |
[_quadrature] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+4 x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x y y^{\prime } = y^{2}+x^{2}
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {y^{2}}{x y-x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, [_Abel, ‘2nd type‘, ‘class B‘]] |
✓ |
|
\[
{}1+y^{2}+y^{2} y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}y^{\prime } = {\mathrm e}^{-2 y+3 x}
\] |
[_separable] |
✓ |
|
\[
{}x -y-\left (x +y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{3}+y^{3}-x y^{2} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \sin \left (x +1-y\right )^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {x +y+4}{x +y-6}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } = \frac {y-1+x}{x +4 y+2}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y+x y^{\prime } = \sqrt {x y}\, y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right )
\] |
[[_homogeneous, ‘class C‘], _exact, _dAlembert] |
✓ |
|
\[
{}x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}y^{\prime } = \frac {x +2 y+2}{-2 x +y}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}y^{\prime } = \frac {-3 x -2 y-1}{2 x +3 y-1}
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{\prime } = \cos \left (\frac {x}{t}\right )
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}2 a x +b y+\left (2 c y+b x +e \right ) y^{\prime } = g
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x {y^{\prime }}^{2}-y+2 y^{\prime } = 0
\] |
[_rational, _dAlembert] |
✓ |
|
\[
{}y-2 x y^{\prime }-y {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}5 x y y^{\prime }-y^{2}-x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}\left (x^{2}+3 x y-y^{2}\right ) y^{\prime }-3 y^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (3 x +2 y-7\right ) y^{\prime } = 2 x -3 y+6
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -3 y+4\right ) y^{\prime } = 5 x -7 y
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -3 y+4\right ) y^{\prime } = 2 x -6 y+7
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (5 x -2 y+7\right ) y^{\prime } = 10 x -4 y+6
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (2 x -2 y+5\right ) y^{\prime } = x -y+3
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (6 x -4 y+1\right ) y^{\prime } = 3 x -2 y+1
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x = y+{y^{\prime }}^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{2}+y^{2}-2 x y y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _Bernoulli] |
✓ |
|
\[
{}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}3 y-7 x +7+\left (3-3 x +7 y\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2}-4 x y-2 y^{2}+\left (y^{2}-4 x y-2 x^{2}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _exact, _rational, _dAlembert] |
✓ |
|
\[
{}2 a x +b y+g +\left (2 c y+b x +e \right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (x +y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}-y+x y^{\prime } = \sqrt {y^{2}+x^{2}}
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}2 x -y+1+\left (2 y-x -1\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _exact, _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}x^{2} y-\left (x^{3}+y^{3}\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}3 y+2 x +4-\left (4 x +6 y+5\right ) y^{\prime } = 0
\] |
[[_homogeneous, ‘class C‘], _rational, [_Abel, ‘2nd type‘, ‘class A‘]] |
✓ |
|
\[
{}\left (x -y\right )^{2} y^{\prime } = a^{2}
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}\left (x +2 y\right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (2 x +y\right ) y^{\prime } = 0
\] |
[_quadrature] |
✓ |
|
\[
{}x -y^{\prime } y = a {y^{\prime }}^{2}
\] |
unknown |
✓ |
|
\[
{}x {y^{\prime }}^{2}-2 y^{\prime } y+a x = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = y {y^{\prime }}^{2}+2 x y^{\prime }
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y = \left (y^{\prime }+1\right ) x +{y^{\prime }}^{2}
\] |
[[_1st_order, _with_linear_symmetries], _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{4 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{2} = 0
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2}-x^{2} = 0
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0
\] |
[[_homogeneous, ‘class C‘], _rational, _dAlembert] |
✓ |
|
\[
{}\left (y^{\prime } y+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right )
\] |
[[_homogeneous, ‘class A‘], _rational, _dAlembert] |
✓ |
|
\[
{}y^{2} \left (1-{y^{\prime }}^{2}\right ) = b
\] |
[_quadrature] |
✓ |
|
\[
{}\left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0
\] |
[[_homogeneous, ‘class A‘], _dAlembert] |
✓ |
|
\[
{}{y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right )
\] |
[[_homogeneous, ‘class C‘], _dAlembert] |
✓ |
|
\[
{}{\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{y^{\prime }}^{3} {\mathrm e}^{2 y} = 0
\] |
unknown |
✓ |
|