2.3.19 first order ode ID 1

Table 2.433: first order ode ID 1

#

ODE

CAS classification

Solved?

67

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

702

\[ {}y^{\prime } = 6 \,{\mathrm e}^{2 x -y} \]
i.c.

[_separable]

1184

\[ {}y^{\prime } = -1+{\mathrm e}^{y} \]

[_quadrature]

1185

\[ {}y^{\prime } = -1+{\mathrm e}^{-y} \]

[_quadrature]

1237

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

2321

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2492

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

[_separable]

2865

\[ {}y^{\prime } = {\mathrm e}^{y} \]
i.c.

[_quadrature]

3411

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

[_separable]

4095

\[ {}{\mathrm e}^{2 y}+\left (x +1\right ) y^{\prime } = 0 \]

[_separable]

4102

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]
i.c.

[_separable]

4105

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

4215

\[ {}y^{\prime } = {\mathrm e}^{y} \sin \left (x \right ) \]

[_separable]

4216

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

4226

\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \]
i.c.

[_separable]

4435

\[ {}y^{\prime }-6 x \,{\mathrm e}^{x -y}-1 = 0 \]

[[_1st_order, _with_linear_symmetries]]

4730

\[ {}y^{\prime } = {\mathrm e}^{y}+x \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

4731

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

5915

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

6279

\[ {}y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y} \]
i.c.

[_separable]

6465

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

7040

\[ {}y^{\prime } = x \,{\mathrm e}^{y} \]
i.c.

[_separable]

7041

\[ {}y^{\prime } = x \,{\mathrm e}^{y} \]
i.c.

[_separable]

7069

\[ {}y^{\prime } = {\mathrm e}^{3 x +2 y} \]

[_separable]

7096

\[ {}y^{\prime } = \frac {{\mathrm e}^{-2 y} \sin \left (x \right )}{x^{2}+1} \]
i.c.

[_separable]

7099

\[ {}{\mathrm e}^{y}-{\mathrm e}^{-x} y^{\prime } = 0 \]
i.c.

[_separable]

7402

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

7734

\[ {}y^{\prime } = \frac {{\mathrm e}^{x -y}}{1+{\mathrm e}^{x}} \]

[_separable]

8982

\[ {}x^{2} y^{\prime }+{\mathrm e}^{-y} = 0 \]

[_separable]

9050

\[ {}y^{\prime } = {\mathrm e}^{x +y} \]

[_separable]

9051

\[ {}y^{\prime } = 10+{\mathrm e}^{x +y} \]

[[_homogeneous, ‘class C‘], _dAlembert]

9052

\[ {}y^{\prime } = 10 \,{\mathrm e}^{x +y}+x^{2} \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9053

\[ {}y^{\prime } = x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

9054

\[ {}y^{\prime } = 5 \,{\mathrm e}^{x^{2}+20 y}+\sin \left (x \right ) \]

[[_1st_order, ‘_with_symmetry_[F(x),G(x)]‘]]

10089

\[ {}y^{\prime }-{\mathrm e}^{x -y}+{\mathrm e}^{x} = 0 \]

[_separable]

13029

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

[_quadrature]

13045

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]
i.c.

[_quadrature]

13061

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]
i.c.

[_separable]

13063

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]
i.c.

[_separable]

13855

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

14369

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

[_separable]

14410

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]
i.c.

[_separable]

14415

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]
i.c.

[_separable]

14606

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

15050

\[ {}y^{\prime } = {\mathrm e}^{2 x -3 y} \]

[_separable]

15069

\[ {}y^{\prime } = {\mathrm e}^{-y} \]

[_quadrature]

15070

\[ {}y^{\prime } = {\mathrm e}^{-y}+1 \]

[_quadrature]

15203

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15205

\[ {}y^{\prime } = {\mathrm e}^{4 x +3 y} \]

[_separable]

15909

\[ {}y^{\prime } = {\mathrm e}^{2 y+10 t} \]

[_separable]

15910

\[ {}y^{\prime } = {\mathrm e}^{3 y+2 t} \]

[_separable]

15941

\[ {}y^{\prime } = {\mathrm e}^{t -y} \]
i.c.

[_separable]

15947

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]
i.c.

[_separable]

15948

\[ {}y^{\prime } = {\mathrm e}^{2 x -y} \]
i.c.

[_separable]

16140

\[ {}y^{\prime } = \frac {{\mathrm e}^{8 y}}{t} \]

[_separable]

16892

\[ {}y^{\prime }-1 = {\mathrm e}^{2 y+x} \]

[[_homogeneous, ‘class C‘], _dAlembert]

17319

\[ {}y^{\prime } = x^{2} {\mathrm e}^{-3 y} \]
i.c.

[_separable]

18094

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]
i.c.

[_separable]

18096

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]
i.c.

[_separable]

18495

\[ {}x^{\prime } = b \,{\mathrm e}^{x} \]
i.c.

[_quadrature]

19113

\[ {}y^{\prime }+x = x \,{\mathrm e}^{\left (n -1\right ) y} \]

[_separable]

19148

\[ {}s^{\prime }+x^{2} = x^{2} {\mathrm e}^{3 s} \]

[_separable]

19276

\[ {}{y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 x y-2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y} = 0 \]

[_quadrature]