2.3.45 Problems 4401 to 4500

Table 2.621: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

4401

10823

\begin{align*} y^{\prime \prime }+\frac {y}{2 x^{4}}&=0 \\ \end{align*}

0.343

4402

16781

\begin{align*} y^{\prime \prime }-9 y&=24 \,{\mathrm e}^{-3 t} \\ y \left (0\right ) &= 6 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Using Laplace transform method.

0.343

4403

20116

\begin{align*} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 y^{\prime } x +2 y&=0 \\ \end{align*}

0.343

4404

20154

\begin{align*} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y&=2 x \\ \end{align*}

0.343

4405

25511

\begin{align*} y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}

0.343

4406

423

\begin{align*} y^{\prime \prime }&=y^{\prime }+y \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.344

4407

1089

\begin{align*} \left (x^{2}-1\right ) y^{\prime \prime }+2 y^{\prime } x +2 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.344

4408

6366

\begin{align*} y^{\prime \prime }&=f \left (a x +b y, y^{\prime }\right ) \\ \end{align*}

0.344

4409

6851

\begin{align*} 1+{\mathrm e}^{\frac {x}{y}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime }&=0 \\ \end{align*}

0.344

4410

10860

\begin{align*} \left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y&=0 \\ \end{align*}

0.344

4411

11070

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+x \left (2 x^{2}+5\right ) y^{\prime }-21 y&=0 \\ \end{align*}

0.344

4412

16031

\begin{align*} x^{\prime }&=4 x+2 y \\ y^{\prime }&=2 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 0 \\ \end{align*}

0.344

4413

16058

\begin{align*} x^{\prime }&=x+y \\ y^{\prime }&=-2 x-y \\ \end{align*}

0.344

4414

16061

\begin{align*} x^{\prime }&=-x+y \\ y^{\prime }&=-2 x+y \\ \end{align*}

0.344

4415

16774

\begin{align*} y^{\prime \prime }+8 y^{\prime }+7 y&=165 \,{\mathrm e}^{4 t} \\ y \left (0\right ) &= 8 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.344

4416

20148

\begin{align*} \left (2 x^{2}+1\right ) y^{\prime \prime }+y^{\prime } x +2 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.344

4417

22878

\begin{align*} y^{\prime \prime } x +y^{\prime }+y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.344

4418

23675

\begin{align*} y^{\prime \prime }-y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.344

4419

441

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }+2 y^{\prime } x -2 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Series expansion around \(x=0\).

0.345

4420

530

\begin{align*} x^{\prime \prime }+4 x&=0 \\ x \left (0\right ) &= 5 \\ x^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.345

4421

2419

\begin{align*} y^{\prime \prime }+\left (t^{2}+2 t +1\right ) y^{\prime }-\left (4+4 t \right ) y&=0 \\ y \left (-1\right ) &= 0 \\ y^{\prime }\left (-1\right ) &= 1 \\ \end{align*}
Series expansion around \(t=-1\).

0.345

4422

4558

\begin{align*} x^{\prime }-x-2 y&=0 \\ x-y^{\prime }&=15 \cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= x_{0} \\ y \left (0\right ) &= y_{0} \\ \end{align*}

0.345

4423

6712

\begin{align*} \left (-x^{3}+3 x^{2}-6 x +6\right ) y^{\prime \prime }+x \left (x^{2}-2 x +2\right ) y^{\prime \prime \prime }&=0 \\ \end{align*}

0.345

4424

9024

\begin{align*} {\mathrm e}^{x}+{\mathrm e}^{y} \left (1+y\right ) y^{\prime }&=0 \\ \end{align*}

0.345

4425

10572

\begin{align*} 4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+4 x \left (6 x^{2}+1\right ) y^{\prime }-\left (-25 x^{2}+1\right ) y&=0 \\ \end{align*}

0.345

4426

18662

\begin{align*} x^{\prime }&=-2 x+y \\ y^{\prime }&=-5 x+4 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 3 \\ \end{align*}

0.345

4427

19662

\begin{align*} x^{\prime }&=\frac {1}{\sqrt {t^{2}+1}} \\ x \left (1\right ) &= 0 \\ \end{align*}

0.345

4428

21209

\begin{align*} x^{\prime }&=x+3 y \\ y^{\prime }&=-3 x+y \\ \end{align*}

0.345

4429

22832

\begin{align*} x^{2} y^{\prime \prime }-y&=0 \\ \end{align*}
Series expansion around \(x=2\).

0.345

4430

23602

\begin{align*} x^{\prime }&=-4 x+y \\ y^{\prime }&=-x-2 y \\ \end{align*}

0.345

4431

24949

\begin{align*} y y^{\prime }&=1-y \\ \end{align*}

0.345

4432

1527

\begin{align*} y^{\prime }&=-x \,{\mathrm e}^{x} \\ y \left (0\right ) &= 1 \\ \end{align*}

0.346

4433

8843

\begin{align*} x_{1}^{\prime }&=-x_{1}+3 x_{2} \\ x_{2}^{\prime }&=-3 x_{1}+5 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 2 \\ \end{align*}

0.346

4434

10648

\begin{align*} 4 x^{2} \left (x^{2}+1\right ) y^{\prime \prime }+8 y^{\prime } x -\left (-x^{2}+35\right ) y&=0 \\ \end{align*}

0.346

4435

10980

\begin{align*} x^{2} \left (x^{2}+1\right ) y^{\prime \prime }-2 x \left (-x^{2}+2\right ) y^{\prime }+4 y&=0 \\ \end{align*}

0.346

4436

18317

\begin{align*} y^{\prime \prime }+y^{\prime }+y \,{\mathrm e}^{-2 x}&={\mathrm e}^{-3 x} \\ \end{align*}

0.346

4437

18638

\begin{align*} x^{\prime }&=-x+2 y \\ y^{\prime }&=-2 x-y \\ \end{align*}

0.346

4438

19642

\begin{align*} x^{\prime }&=-3 x+4 y \\ y^{\prime }&=-2 x+3 y \\ \end{align*}

0.346

4439

20887

\begin{align*} \left (x +1\right ) y^{\prime }&=y p \\ \end{align*}
Series expansion around \(x=0\).

0.346

4440

21715

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&={\mathrm e}^{-t} \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.346

4441

22690

\begin{align*} 4 i^{\prime \prime }+i&=t^{2}+2 \cos \left (4 t \right ) \\ \end{align*}

0.346

4442

22785

\begin{align*} y^{\prime \prime \prime \prime }+16 y^{\prime \prime }&=64 \cos \left (4 x \right ) \\ \end{align*}

0.346

4443

974

\begin{align*} x_{1}^{\prime }&=-3 x_{1}-2 x_{2} \\ x_{2}^{\prime }&=9 x_{1}+3 x_{2} \\ \end{align*}

0.347

4444

1526

\begin{align*} y^{\prime }&=x \ln \left (x \right ) \\ \end{align*}

0.347

4445

4299

\begin{align*} \frac {x}{x^{2}+y^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{x^{2}+y^{2}}-\frac {1}{x}\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 0 \\ \end{align*}

0.347

4446

7906

\begin{align*} y+x^{3} y+2 x^{2}+\left (x +4 y^{4} x +8 y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

0.347

4447

8486

\begin{align*} \left (x -1\right ) y^{\prime \prime }+y^{\prime }&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.347

4448

9653

\begin{align*} y^{\prime \prime }+2 y^{\prime }+10 y&=\delta \left (t \right ) \\ \end{align*}
Using Laplace transform method.

0.347

4449

9732

\begin{align*} {y^{\prime }}^{2}-y^{\prime } x +y&=0 \\ \end{align*}

0.347

4450

10598

\begin{align*} \left (1-x \right ) x^{2} y^{\prime \prime }+x \left (7+x \right ) y^{\prime }+\left (9-x \right ) y&=0 \\ \end{align*}

0.347

4451

10952

\begin{align*} \left (2 x^{2}+3 x \right ) y^{\prime \prime }+10 \left (x +1\right ) y^{\prime }+8 y&=0 \\ \end{align*}

0.347

4452

12954

\begin{align*} 2 y y^{\prime \prime }-{y^{\prime }}^{2}+1+2 x y^{2}+a y^{3}&=0 \\ \end{align*}

0.347

4453

16034

\begin{align*} x^{\prime }&=-3 x-y \\ y^{\prime }&=4 x+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= -1 \\ y \left (0\right ) &= 2 \\ \end{align*}

0.347

4454

18022

\begin{align*} y^{\prime }+y^{2}-2 \sin \left (x \right ) y+\sin \left (x \right )^{2}-\cos \left (x \right )&=0 \\ \end{align*}

0.347

4455

18370

\begin{align*} 6 y^{\prime \prime } x +6 x^{2} y^{\prime \prime \prime }+x^{3} y^{\prime \prime \prime \prime }&=0 \\ y \left (1\right ) &= 0 \\ y^{\prime }\left (1\right ) &= 0 \\ \end{align*}

0.347

4456

19418

\begin{align*} y^{\prime \prime }&=2 y {y^{\prime }}^{3} \\ \end{align*}

0.347

4457

25374

\begin{align*} y_{1}^{\prime }&=3 y_{1}-4 y_{2} \\ y_{2}^{\prime }&=y_{1}-y_{2} \\ \end{align*}
With initial conditions
\begin{align*} y_{1} \left (0\right ) &= 1 \\ y_{2} \left (0\right ) &= 1 \\ \end{align*}

0.347

4458

972

\begin{align*} x_{1}^{\prime }&=x_{1}-5 x_{2} \\ x_{2}^{\prime }&=x_{1}-x_{2} \\ \end{align*}

0.348

4459

1375

\begin{align*} \left (1-x \right ) y^{\prime \prime }+y^{\prime } x -y&=0 \\ y \left (0\right ) &= -3 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}
Series expansion around \(x=0\).

0.348

4460

2055

\begin{align*} 9 \left (x +3\right ) x^{2} y^{\prime \prime }+3 x \left (3+7 x \right ) y^{\prime }+\left (4 x +3\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.348

4461

3195

\begin{align*} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+9 y^{\prime \prime }&=\sin \left (3 x \right )+x \,{\mathrm e}^{x} \\ \end{align*}

0.348

4462

3791

\begin{align*} y^{\prime \prime }-6 y^{\prime }+9 y&=15 \,{\mathrm e}^{3 x} \sqrt {x} \\ \end{align*}

0.348

4463

7645

\begin{align*} y^{\prime }+2 \left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=1\).

0.348

4464

8396

\begin{align*} y^{\prime }&=\frac {1}{1+\sin \left (x \right )} \\ \end{align*}

0.348

4465

8492

\begin{align*} \left (x -1\right ) y^{\prime \prime }-y^{\prime } x +y&=0 \\ y \left (0\right ) &= -2 \\ y^{\prime }\left (0\right ) &= 6 \\ \end{align*}
Series expansion around \(x=0\).

0.348

4466

9819

\begin{align*} x {y^{\prime }}^{2}-\left (x^{2}+1\right ) y^{\prime }+x&=0 \\ \end{align*}

0.348

4467

10001

\begin{align*} y^{\prime }&=\frac {1}{x} \\ \end{align*}

0.348

4468

10050

\begin{align*} y^{2} y^{\prime \prime }&=x \\ \end{align*}

0.348

4469

22304

\begin{align*} y^{\prime }&=3 \sin \left (x \right ) \\ y \left (\pi \right ) &= -1 \\ \end{align*}

0.348

4470

22912

\begin{align*} x^{\prime }+6 x+3 y^{\prime }+2 y&=0 \\ x^{\prime }+5 x+2 y^{\prime }+3 y&=0 \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 4 \\ \end{align*}

0.348

4471

437

\begin{align*} y^{\prime \prime }-x^{2} y^{\prime }-3 y x&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.349

4472

970

\begin{align*} x_{1}^{\prime }&=9 x_{1}+5 x_{2} \\ x_{2}^{\prime }&=-6 x_{1}-2 x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 1 \\ x_{2} \left (0\right ) &= 0 \\ \end{align*}

0.349

4473

1378

\begin{align*} \left (x^{2}+2\right ) y^{\prime \prime }-y^{\prime } x +4 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.349

4474

1795

\begin{align*} y^{\prime }+y^{2}+14 y+50&=0 \\ \end{align*}

0.349

4475

3498

\begin{align*} x y^{\prime \prime \prime }+2 y^{\prime \prime }&=A x \\ \end{align*}

0.349

4476

3940

\begin{align*} y^{\prime \prime }-2 y^{\prime }&=30 \,{\mathrm e}^{-3 t} \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

0.349

4477

9468

\begin{align*} x^{\prime }&=-4 x-y \\ y^{\prime }&=x-2 y \\ \end{align*}

0.349

4478

10011

\begin{align*} y^{\prime } x&=0 \\ \end{align*}

0.349

4479

10059

\begin{align*} x^{\prime }&=x-2 y \\ y^{\prime }&=2 x+5 y \\ \end{align*}

0.349

4480

12277

\begin{align*} y^{\prime }&=\left (\cos \left (x \right )+y\right )^{2}+\sin \left (x \right ) \\ \end{align*}

0.349

4481

18694

\begin{align*} x^{\prime }&=-3 x+\frac {5 y}{2} \\ y^{\prime }&=-\frac {5 x}{2}+2 y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 3 \\ y \left (0\right ) &= 1 \\ \end{align*}

0.349

4482

18695

\begin{align*} x^{\prime }&=2 x+\frac {y}{2} \\ y^{\prime }&=-\frac {x}{2}+y \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 1 \\ y \left (0\right ) &= 3 \\ \end{align*}

0.349

4483

19656

\begin{align*} x^{\prime }&=4 x-3 y \\ y^{\prime }&=8 x-6 y \\ \end{align*}

0.349

4484

23559

\begin{align*} x^{\prime }&=5 x-6 y \\ y^{\prime }&=6 x-7 y \\ \end{align*}

0.349

4485

25647

\begin{align*} y^{\prime }&=2 \,{\mathrm e}^{2 t}-4 \,{\mathrm e}^{t} \\ \end{align*}

0.349

4486

658

\begin{align*} y^{\prime }&=\cos \left (2 x \right ) \\ y \left (0\right ) &= 1 \\ \end{align*}

0.350

4487

3936

\begin{align*} y^{\prime \prime }-3 y^{\prime }+2 y&=4 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}
Using Laplace transform method.

0.350

4488

8494

\begin{align*} y^{\prime \prime }-2 y^{\prime } x +8 y&=0 \\ y \left (0\right ) &= 3 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.350

4489

9032

\begin{align*} 5 x^{3} y^{2}+2 y+\left (3 x^{4} y+2 x \right ) y^{\prime }&=0 \\ \end{align*}

0.350

4490

14878

\begin{align*} x^{\prime }&=2 \sin \left (t \right )^{2} \\ x \left (\frac {\pi }{4}\right ) &= \frac {\pi }{4} \\ \end{align*}

0.350

4491

14978

\begin{align*} y^{\prime \prime }-2 y^{\prime } x -4 y&=0 \\ \end{align*}
Series expansion around \(x=0\).

0.350

4492

16205

\begin{align*} y^{\prime }+2 y-y^{2}&=-2 \\ \end{align*}

0.350

4493

16988

\begin{align*} y^{\prime }&=\frac {\sqrt {x^{2}-16}}{x} \\ \end{align*}

0.350

4494

19246

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=x \\ \end{align*}

0.350

4495

20512

\begin{align*} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-y^{\prime } x +y&=x \ln \left (x \right ) \\ \end{align*}

0.350

4496

20888

\begin{align*} y^{\prime \prime }+9 y&=0 \\ y \left (0\right ) &= 1 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Series expansion around \(x=0\).

0.350

4497

22887

\begin{align*} y^{\prime }+6 y&=x^{\prime } \\ 3 x-x^{\prime }&=2 y^{\prime } \\ \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) &= 2 \\ y \left (0\right ) &= 3 \\ \end{align*}

0.350

4498

23551

\begin{align*} 2 y-2 y^{\prime } x +\left (x^{2}+1\right ) y^{\prime \prime }&=\left (x^{2}+1\right )^{2} \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 1 \\ \end{align*}

0.350

4499

975

\begin{align*} x_{1}^{\prime }&=x_{1}-2 x_{2} \\ x_{2}^{\prime }&=2 x_{1}+x_{2} \\ \end{align*}
With initial conditions
\begin{align*} x_{1} \left (0\right ) &= 0 \\ x_{2} \left (0\right ) &= 4 \\ \end{align*}

0.351

4500

3418

\begin{align*} y^{\prime }&={\mathrm e}^{2 t} t \\ \end{align*}

0.351