2.3.154 Problems 15301 to 15400

Table 2.839: Main lookup table. Sorted by time used to solve.

#

ID

ODE

Solved?

Maple

Mma

Sympy

time(sec)

15301

11567

\begin{align*} 2 y x +\left (a +x^{2}+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

3.337

15302

17465

\begin{align*} y^{\prime \prime }-3 y^{\prime }&=-{\mathrm e}^{3 t}-2 t \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= {\frac {8}{9}} \\ \end{align*}

3.337

15303

19946

\begin{align*} y^{\prime }+\frac {4 x y}{x^{2}+1}&=\frac {1}{\left (x^{2}+1\right )^{3}} \\ \end{align*}

3.337

15304

686

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=\left (1+y\right )^{2} \\ \end{align*}

3.338

15305

20308

\begin{align*} y \left (2 x^{2} y+{\mathrm e}^{x}\right )-\left ({\mathrm e}^{x}+y^{3}\right ) y^{\prime }&=0 \\ \end{align*}

3.338

15306

21565

\begin{align*} y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\ \end{align*}

3.339

15307

24254

\begin{align*} 1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

3.339

15308

17169

\begin{align*} \left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y&=t \\ y \left (0\right ) &= -1 \\ \end{align*}

3.340

15309

6869

\begin{align*} y^{\prime } x -a y+y^{2}&=x^{-\frac {2 a}{3}} \\ \end{align*}

3.341

15310

2847

\begin{align*} \left (x +1\right ) y^{\prime }-1+y&=0 \\ \end{align*}

3.342

15311

5765

\begin{align*} \left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\ \end{align*}

3.342

15312

4334

\begin{align*} y \left (2 x -y+2\right )+2 \left (x -y\right ) y^{\prime }&=0 \\ \end{align*}

3.343

15313

5611

\begin{align*} {y^{\prime }}^{3}&=\left (y-a \right )^{2} \left (y-b \right )^{2} \\ \end{align*}

3.343

15314

7264

\begin{align*} y^{\prime \prime }+16 y&=0 \\ \end{align*}

3.344

15315

702

\begin{align*} y^{\prime }&=6 \,{\mathrm e}^{2 x -y} \\ y \left (0\right ) &= 0 \\ \end{align*}

3.345

15316

1696

\begin{align*} 4 x^{3} y^{2}-6 x^{2} y-2 x -3+\left (2 x^{4} y-2 x^{3}\right ) y^{\prime }&=0 \\ y \left (1\right ) &= 3 \\ \end{align*}

3.345

15317

10399

\begin{align*} y^{\prime \prime }+y&=x +1 \\ \end{align*}

3.346

15318

1331

\begin{align*} 4 t^{2} y^{\prime \prime }-8 y^{\prime } t +9 y&=0 \\ \end{align*}

3.347

15319

4618

\begin{align*} y^{\prime }&=a \,x^{n} y \\ \end{align*}

3.347

15320

12648

\begin{align*} y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -3\right ) y}{4 \left (x^{2}+1\right )^{2}} \\ \end{align*}

3.347

15321

23031

\begin{align*} z^{\prime \prime }+8 z^{\prime }+16 z&=0 \\ \end{align*}

3.347

15322

15781

\begin{align*} y^{\prime }&=2 t y^{2}+3 y^{2} \\ \end{align*}

3.348

15323

96

\begin{align*} \left (x^{2}+4\right ) y^{\prime }+3 y x&=x \\ y \left (0\right ) &= 1 \\ \end{align*}

3.349

15324

12269

\begin{align*} y^{\prime }&=-F \left (x \right ) \left (-a y^{2}-b \,x^{2}\right )+\frac {y}{x} \\ \end{align*}

3.349

15325

13709

\begin{align*} y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{n +m}+b \,x^{2 m}+m \,x^{m -1}\right ) y&=0 \\ \end{align*}

3.349

15326

16245

\begin{align*} y^{\prime }&=\frac {2+\sqrt {x}}{2+\sqrt {y}} \\ \end{align*}

3.349

15327

17460

\begin{align*} y^{\prime \prime }+2 y^{\prime }-3 y&=-2 \\ y \left (0\right ) &= {\frac {2}{3}} \\ y^{\prime }\left (0\right ) &= 8 \\ \end{align*}

3.349

15328

20298

\begin{align*} \left (x -y\right )^{2} y^{\prime }&=a^{2} \\ \end{align*}

3.349

15329

3558

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ \end{align*}

3.352

15330

5787

\begin{align*} -4 y-3 y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

3.352

15331

25528

\begin{align*} m y^{\prime \prime }+k y&=1 \\ \end{align*}

3.352

15332

1100

\begin{align*} y+y^{\prime }&=1+t \,{\mathrm e}^{-t} \\ \end{align*}

3.355

15333

7525

\begin{align*} y^{\prime }&=\frac {{\mathrm e}^{x +y}}{-1+y} \\ \end{align*}

3.355

15334

23277

\begin{align*} y^{\prime \prime } x -3 y^{\prime }-5 y&=0 \\ \end{align*}

3.355

15335

17183

\begin{align*} -\frac {y}{2}+y^{\prime }&=5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \\ \end{align*}

3.357

15336

20776

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}&=\ln \left (y\right ) y^{2} \\ \end{align*}

3.357

15337

61

\begin{align*} 2 y y^{\prime }&=\frac {x}{\sqrt {x^{2}-16}} \\ y \left (5\right ) &= 2 \\ \end{align*}

3.358

15338

10327

\begin{align*} y^{\prime }&=x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \\ \end{align*}

3.358

15339

21790

\begin{align*} y^{\prime } x&=x +2 y \\ \end{align*}

3.358

15340

7354

\begin{align*} \sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2}&=r \cos \left (\theta \right )^{2} \\ \end{align*}

3.359

15341

19669

\begin{align*} x^{\prime }&=2 \sqrt {x} \\ x \left (0\right ) &= 1 \\ \end{align*}

3.359

15342

2565

\begin{align*} t^{2} y^{\prime \prime }+2 y^{\prime } t +2 y&=0 \\ \end{align*}

3.360

15343

8246

\begin{align*} 4 y+y^{\prime \prime }&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (\frac {\pi }{4}\right ) &= 3 \\ \end{align*}

3.360

15344

14012

\begin{align*} \left (x +y\right ) y^{\prime }-1&=0 \\ \end{align*}

3.360

15345

15786

\begin{align*} y^{\prime }&=\frac {2 y+1}{t} \\ \end{align*}

3.361

15346

496

\begin{align*} x \left (x -1\right ) \left (x +1\right )^{2} y^{\prime \prime }+2 x \left (x -3\right ) \left (x +1\right ) y^{\prime }-2 \left (x -1\right ) y&=0 \\ \end{align*}
Series expansion around \(x=0\).

3.362

15347

4771

\begin{align*} y^{\prime } x +\left (-a \,x^{2}+2\right ) y&=0 \\ \end{align*}

3.362

15348

24303

\begin{align*} x^{2}-2 y x -y^{2}-\left (x^{2}+2 y x -y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

3.362

15349

7735

\begin{align*} y+\left (x^{2}-4 x \right ) y^{\prime }&=0 \\ \end{align*}

3.364

15350

25099

\begin{align*} y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\ \end{align*}

3.364

15351

5545

\begin{align*} y {y^{\prime }}^{2}+2 a x y^{\prime }-a y&=0 \\ \end{align*}

3.365

15352

15830

\begin{align*} y^{\prime }&=t +t y \\ \end{align*}

3.365

15353

3592

\begin{align*} y^{\prime }&=2 y x \\ \end{align*}

3.367

15354

3630

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{x}&=9 x \\ \end{align*}

3.367

15355

7528

\begin{align*} y^{\prime }+\frac {3 y}{x}&=x^{2}-4 x +3 \\ \end{align*}

3.367

15356

17860

\begin{align*} y^{\prime }&=x^{2}+2 x -y \\ \end{align*}

3.367

15357

3033

\begin{align*} \sec \left (y\right )^{2} y^{\prime }&=\tan \left (y\right )+2 x \,{\mathrm e}^{x} \\ \end{align*}

3.368

15358

4880

\begin{align*} x^{2} y^{\prime }+2+a x \left (-y x +1\right )-y^{2} x^{2}&=0 \\ \end{align*}

3.368

15359

5782

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\ \end{align*}

3.368

15360

18586

\begin{align*} 2 y x +3 x^{2} y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime }&=0 \\ \end{align*}

3.368

15361

20786

\begin{align*} y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-\left (1-\cot \left (x \right )\right ) y&={\mathrm e}^{x} \sin \left (x \right ) \\ \end{align*}

3.368

15362

23236

\begin{align*} y^{\prime \prime }&=\frac {1+{y^{\prime }}^{2}}{y} \\ \end{align*}

3.369

15363

6820

\begin{align*} y+x y^{2}-y^{\prime } x&=0 \\ \end{align*}

3.370

15364

17227

\begin{align*} 1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t}&=0 \\ y \left (2\right ) &= 1 \\ \end{align*}

3.370

15365

5346

\begin{align*} \left (a \cos \left (a y+b x \right )-b \sin \left (a x +b y\right )\right ) y^{\prime }+b \cos \left (a y+b x \right )-a \sin \left (a x +b y\right )&=0 \\ \end{align*}

3.371

15366

21606

\begin{align*} y^{\prime }+x \left (-x +y\right )+x^{3} \left (-x +y\right )^{2}&=1 \\ \end{align*}

3.371

15367

14456

\begin{align*} y+x \left (x^{2}+y^{2}\right )^{2}+\left (y \left (x^{2}+y^{2}\right )^{2}-x \right ) y^{\prime }&=0 \\ \end{align*}

3.372

15368

4940

\begin{align*} x \left (x +1\right ) y^{\prime }&=\left (x +1\right ) \left (x^{2}-1\right )+\left (x^{2}+x -1\right ) y \\ \end{align*}

3.373

15369

15448

\begin{align*} y y^{\prime \prime }&=1+{y^{\prime }}^{2} \\ \end{align*}

3.373

15370

16143

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&=\delta \left (t -1\right )-3 \delta \left (t -4\right ) \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 0 \\ \end{align*}
Using Laplace transform method.

3.373

15371

23008

\begin{align*} 35 y^{\prime \prime }-29 y^{\prime }+6 y&=0 \\ \end{align*}

3.373

15372

20282

\begin{align*} x +y^{\prime }&=x \,{\mathrm e}^{\left (n -1\right ) y} \\ \end{align*}

3.374

15373

14127

\begin{align*} 4 y+y^{\prime \prime }&=\sin \left (x \right )^{2} \\ \end{align*}

3.375

15374

23892

\begin{align*} x^{4}-3 y+3 y^{\prime }&=0 \\ \end{align*}

3.375

15375

18517

\begin{align*} 4 t y+\left (t^{2}+1\right ) y^{\prime }&=\frac {1}{\left (t^{2}+1\right )^{2}} \\ \end{align*}

3.376

15376

774

\begin{align*} 2 x y^{3}+{\mathrm e}^{x}+\left (3 y^{2} x^{2}+\sin \left (y\right )\right ) y^{\prime }&=0 \\ \end{align*}

3.377

15377

4584

\begin{align*} x_{1}^{\prime }&=4 x_{1}-x_{2}-x_{3}+{\mathrm e}^{3 t} \\ x_{2}^{\prime }&=x_{1}+2 x_{2}-x_{3} \\ x_{3}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\ \end{align*}

3.378

15378

6311

\begin{align*} a \,{\mathrm e}^{y}+y^{\prime \prime }&=0 \\ \end{align*}

3.378

15379

14277

\begin{align*} x^{2}-t^{2} x^{\prime }&=0 \\ \end{align*}

3.378

15380

23898

\begin{align*} 2 x y^{2}+2 x +\left (6 y^{3}+2 y+4 x^{2} y\right ) y^{\prime }&=0 \\ \end{align*}

3.380

15381

11459

\begin{align*} \left (x^{2}-4\right ) y^{\prime }+\left (2+x \right ) y^{2}-4 y&=0 \\ \end{align*}

3.381

15382

14193

\begin{align*} x^{\prime }&=-\frac {t}{x} \\ \end{align*}

3.382

15383

5830

\begin{align*} b y+a x y^{\prime }+y^{\prime \prime }&=0 \\ \end{align*}

3.383

15384

15541

\begin{align*} y^{\prime }&={| y|} \\ \end{align*}

3.383

15385

2560

\begin{align*} y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\ y \left (0\right ) &= 0 \\ y^{\prime }\left (0\right ) &= 2 \\ \end{align*}

3.384

15386

5204

\begin{align*} 3 x^{4} y y^{\prime }&=1-2 x^{3} y^{2} \\ \end{align*}

3.384

15387

12351

\begin{align*} y^{\prime \prime }-\left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right ) y^{\prime }+\left (\frac {h^{\prime }\left (x \right ) \left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right )}{h \left (x \right )}-\frac {h^{\prime \prime }\left (x \right )}{h \left (x \right )}+{g^{\prime }\left (x \right )}^{2}\right ) y&=0 \\ \end{align*}

3.384

15388

189

\begin{align*} x^{2} y^{\prime }&=y x +3 y^{2} \\ \end{align*}

3.385

15389

3315

\begin{align*} x&=y y^{\prime }+{y^{\prime }}^{2} \\ \end{align*}

3.385

15390

5727

\begin{align*} y^{\prime \prime }+y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\ \end{align*}

3.385

15391

21602

\begin{align*} x^{2} u^{\prime \prime }-3 u^{\prime } x +13 u&=0 \\ u \left (1\right ) &= -1 \\ u^{\prime }\left (1\right ) &= 1 \\ \end{align*}

3.386

15392

19388

\begin{align*} y^{\prime }+2 y x&={\mathrm e}^{-x^{2}} \\ \end{align*}

3.387

15393

4972

\begin{align*} x^{3} y^{\prime }&=\left (x +1\right ) y^{2} \\ \end{align*}

3.388

15394

5231

\begin{align*} \left (x -y\right )^{2} y^{\prime }&=\left (-x -y+1\right )^{2} \\ \end{align*}

3.388

15395

7583

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\ \end{align*}

3.388

15396

25087

\begin{align*} y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{t} \\ \end{align*}

3.388

15397

5286

\begin{align*} x \left (-y x +1\right )^{2} y^{\prime }+\left (1+y^{2} x^{2}\right ) y&=0 \\ \end{align*}

3.389

15398

19921

\begin{align*} y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime }&=0 \\ \end{align*}

3.390

15399

22332

\begin{align*} y^{\prime }&=y^{3} \\ \end{align*}

3.390

15400

12057

\begin{align*} y^{\prime }&=\frac {x -y+\sqrt {y}}{x -y+\sqrt {y}+1} \\ \end{align*}

3.391