| # |
ID |
ODE |
Solved? |
Maple |
Mma |
Sympy |
time(sec) |
| 15301 |
\begin{align*}
2 y x +\left (a +x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.337 |
|
| 15302 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }&=-{\mathrm e}^{3 t}-2 t \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= {\frac {8}{9}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.337 |
|
| 15303 |
\begin{align*}
y^{\prime }+\frac {4 x y}{x^{2}+1}&=\frac {1}{\left (x^{2}+1\right )^{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.337 |
|
| 15304 |
\begin{align*}
\left (x^{2}+1\right ) y^{\prime }&=\left (1+y\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.338 |
|
| 15305 |
\begin{align*}
y \left (2 x^{2} y+{\mathrm e}^{x}\right )-\left ({\mathrm e}^{x}+y^{3}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.338 |
|
| 15306 |
\begin{align*}
y y^{\prime \prime }+{y^{\prime }}^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.339 |
|
| 15307 |
\begin{align*}
1-\left (1+2 x \tan \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.339 |
|
| 15308 |
\begin{align*}
\left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y&=t \\
y \left (0\right ) &= -1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.340 |
|
| 15309 |
\begin{align*}
y^{\prime } x -a y+y^{2}&=x^{-\frac {2 a}{3}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.341 |
|
| 15310 |
\begin{align*}
\left (x +1\right ) y^{\prime }-1+y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.342 |
|
| 15311 |
\begin{align*}
\left (a +b \sin \left (x \right )^{2}\right ) y+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.342 |
|
| 15312 |
\begin{align*}
y \left (2 x -y+2\right )+2 \left (x -y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.343 |
|
| 15313 |
\begin{align*}
{y^{\prime }}^{3}&=\left (y-a \right )^{2} \left (y-b \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.343 |
|
| 15314 |
\begin{align*}
y^{\prime \prime }+16 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.344 |
|
| 15315 |
\begin{align*}
y^{\prime }&=6 \,{\mathrm e}^{2 x -y} \\
y \left (0\right ) &= 0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.345 |
|
| 15316 |
\begin{align*}
4 x^{3} y^{2}-6 x^{2} y-2 x -3+\left (2 x^{4} y-2 x^{3}\right ) y^{\prime }&=0 \\
y \left (1\right ) &= 3 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.345 |
|
| 15317 |
\begin{align*}
y^{\prime \prime }+y&=x +1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.346 |
|
| 15318 |
\begin{align*}
4 t^{2} y^{\prime \prime }-8 y^{\prime } t +9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.347 |
|
| 15319 |
\begin{align*}
y^{\prime }&=a \,x^{n} y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.347 |
|
| 15320 |
\begin{align*}
y^{\prime \prime }&=-\frac {\left (a \,x^{2}+a -3\right ) y}{4 \left (x^{2}+1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.347 |
|
| 15321 |
\begin{align*}
z^{\prime \prime }+8 z^{\prime }+16 z&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.347 |
|
| 15322 |
\begin{align*}
y^{\prime }&=2 t y^{2}+3 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.348 |
|
| 15323 |
\begin{align*}
\left (x^{2}+4\right ) y^{\prime }+3 y x&=x \\
y \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.349 |
|
| 15324 |
\begin{align*}
y^{\prime }&=-F \left (x \right ) \left (-a y^{2}-b \,x^{2}\right )+\frac {y}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.349 |
|
| 15325 |
\begin{align*}
y^{\prime \prime }+a \,x^{n} y^{\prime }-b \left (a \,x^{n +m}+b \,x^{2 m}+m \,x^{m -1}\right ) y&=0 \\
\end{align*} |
✗ |
✗ |
✗ |
✗ |
3.349 |
|
| 15326 |
\begin{align*}
y^{\prime }&=\frac {2+\sqrt {x}}{2+\sqrt {y}} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.349 |
|
| 15327 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }-3 y&=-2 \\
y \left (0\right ) &= {\frac {2}{3}} \\
y^{\prime }\left (0\right ) &= 8 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.349 |
|
| 15328 |
\begin{align*}
\left (x -y\right )^{2} y^{\prime }&=a^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.349 |
|
| 15329 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.352 |
|
| 15330 |
\begin{align*}
-4 y-3 y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.352 |
|
| 15331 |
\begin{align*}
m y^{\prime \prime }+k y&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.352 |
|
| 15332 |
\begin{align*}
y+y^{\prime }&=1+t \,{\mathrm e}^{-t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.355 |
|
| 15333 |
\begin{align*}
y^{\prime }&=\frac {{\mathrm e}^{x +y}}{-1+y} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.355 |
|
| 15334 |
\begin{align*}
y^{\prime \prime } x -3 y^{\prime }-5 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.355 |
|
| 15335 |
\begin{align*}
-\frac {y}{2}+y^{\prime }&=5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.357 |
|
| 15336 |
\begin{align*}
y y^{\prime \prime }-{y^{\prime }}^{2}&=\ln \left (y\right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.357 |
|
| 15337 |
\begin{align*}
2 y y^{\prime }&=\frac {x}{\sqrt {x^{2}-16}} \\
y \left (5\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.358 |
|
| 15338 |
\begin{align*}
y^{\prime }&=x \,{\mathrm e}^{x +y}+\sin \left (x \right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.358 |
|
| 15339 |
\begin{align*}
y^{\prime } x&=x +2 y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.358 |
|
| 15340 |
\begin{align*}
\sin \left (\theta \right ) \cos \left (\theta \right ) r^{\prime }-\sin \left (\theta \right )^{2}&=r \cos \left (\theta \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.359 |
|
| 15341 |
\begin{align*}
x^{\prime }&=2 \sqrt {x} \\
x \left (0\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.359 |
|
| 15342 |
\begin{align*}
t^{2} y^{\prime \prime }+2 y^{\prime } t +2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.360 |
|
| 15343 |
\begin{align*}
4 y+y^{\prime \prime }&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (\frac {\pi }{4}\right ) &= 3 \\
\end{align*} |
✓ |
✗ |
✗ |
✗ |
3.360 |
|
| 15344 |
\begin{align*}
\left (x +y\right ) y^{\prime }-1&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.360 |
|
| 15345 |
\begin{align*}
y^{\prime }&=\frac {2 y+1}{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.361 |
|
| 15346 |
\begin{align*}
x \left (x -1\right ) \left (x +1\right )^{2} y^{\prime \prime }+2 x \left (x -3\right ) \left (x +1\right ) y^{\prime }-2 \left (x -1\right ) y&=0 \\
\end{align*} Series expansion around \(x=0\). |
✓ |
✓ |
✓ |
✓ |
3.362 |
|
| 15347 |
\begin{align*}
y^{\prime } x +\left (-a \,x^{2}+2\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.362 |
|
| 15348 |
\begin{align*}
x^{2}-2 y x -y^{2}-\left (x^{2}+2 y x -y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.362 |
|
| 15349 |
\begin{align*}
y+\left (x^{2}-4 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.364 |
|
| 15350 |
\begin{align*}
y^{\prime \prime }-4 y^{\prime }-12 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.364 |
|
| 15351 |
\begin{align*}
y {y^{\prime }}^{2}+2 a x y^{\prime }-a y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.365 |
|
| 15352 |
\begin{align*}
y^{\prime }&=t +t y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.365 |
|
| 15353 |
\begin{align*}
y^{\prime }&=2 y x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.367 |
|
| 15354 |
\begin{align*}
y^{\prime \prime }+\frac {y^{\prime }}{x}&=9 x \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.367 |
|
| 15355 |
\begin{align*}
y^{\prime }+\frac {3 y}{x}&=x^{2}-4 x +3 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.367 |
|
| 15356 |
\begin{align*}
y^{\prime }&=x^{2}+2 x -y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.367 |
|
| 15357 |
\begin{align*}
\sec \left (y\right )^{2} y^{\prime }&=\tan \left (y\right )+2 x \,{\mathrm e}^{x} \\
\end{align*} |
✓ |
✗ |
✓ |
✗ |
3.368 |
|
| 15358 |
\begin{align*}
x^{2} y^{\prime }+2+a x \left (-y x +1\right )-y^{2} x^{2}&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.368 |
|
| 15359 |
\begin{align*}
y^{\prime \prime }+3 y^{\prime }+2 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.368 |
|
| 15360 |
\begin{align*}
2 y x +3 x^{2} y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.368 |
|
| 15361 |
\begin{align*}
y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-\left (1-\cot \left (x \right )\right ) y&={\mathrm e}^{x} \sin \left (x \right ) \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.368 |
|
| 15362 |
\begin{align*}
y^{\prime \prime }&=\frac {1+{y^{\prime }}^{2}}{y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.369 |
|
| 15363 |
\begin{align*}
y+x y^{2}-y^{\prime } x&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.370 |
|
| 15364 |
\begin{align*}
1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t}&=0 \\
y \left (2\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.370 |
|
| 15365 |
\begin{align*}
\left (a \cos \left (a y+b x \right )-b \sin \left (a x +b y\right )\right ) y^{\prime }+b \cos \left (a y+b x \right )-a \sin \left (a x +b y\right )&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.371 |
|
| 15366 |
\begin{align*}
y^{\prime }+x \left (-x +y\right )+x^{3} \left (-x +y\right )^{2}&=1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.371 |
|
| 15367 |
\begin{align*}
y+x \left (x^{2}+y^{2}\right )^{2}+\left (y \left (x^{2}+y^{2}\right )^{2}-x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.372 |
|
| 15368 |
\begin{align*}
x \left (x +1\right ) y^{\prime }&=\left (x +1\right ) \left (x^{2}-1\right )+\left (x^{2}+x -1\right ) y \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.373 |
|
| 15369 |
\begin{align*}
y y^{\prime \prime }&=1+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.373 |
|
| 15370 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+3 y&=\delta \left (t -1\right )-3 \delta \left (t -4\right ) \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 0 \\
\end{align*} Using Laplace transform method. |
✓ |
✓ |
✓ |
✓ |
3.373 |
|
| 15371 |
\begin{align*}
35 y^{\prime \prime }-29 y^{\prime }+6 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.373 |
|
| 15372 |
\begin{align*}
x +y^{\prime }&=x \,{\mathrm e}^{\left (n -1\right ) y} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.374 |
|
| 15373 |
\begin{align*}
4 y+y^{\prime \prime }&=\sin \left (x \right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.375 |
|
| 15374 |
\begin{align*}
x^{4}-3 y+3 y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.375 |
|
| 15375 |
\begin{align*}
4 t y+\left (t^{2}+1\right ) y^{\prime }&=\frac {1}{\left (t^{2}+1\right )^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.376 |
|
| 15376 |
\begin{align*}
2 x y^{3}+{\mathrm e}^{x}+\left (3 y^{2} x^{2}+\sin \left (y\right )\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.377 |
|
| 15377 |
\begin{align*}
x_{1}^{\prime }&=4 x_{1}-x_{2}-x_{3}+{\mathrm e}^{3 t} \\
x_{2}^{\prime }&=x_{1}+2 x_{2}-x_{3} \\
x_{3}^{\prime }&=x_{1}+x_{2}+2 x_{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.378 |
|
| 15378 |
\begin{align*}
a \,{\mathrm e}^{y}+y^{\prime \prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.378 |
|
| 15379 |
\begin{align*}
x^{2}-t^{2} x^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.378 |
|
| 15380 |
\begin{align*}
2 x y^{2}+2 x +\left (6 y^{3}+2 y+4 x^{2} y\right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.380 |
|
| 15381 |
\begin{align*}
\left (x^{2}-4\right ) y^{\prime }+\left (2+x \right ) y^{2}-4 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.381 |
|
| 15382 |
\begin{align*}
x^{\prime }&=-\frac {t}{x} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.382 |
|
| 15383 |
\begin{align*}
b y+a x y^{\prime }+y^{\prime \prime }&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.383 |
|
| 15384 |
\begin{align*}
y^{\prime }&={| y|} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.383 |
|
| 15385 |
\begin{align*}
y^{\prime \prime }+2 y^{\prime }+5 y&=0 \\
y \left (0\right ) &= 0 \\
y^{\prime }\left (0\right ) &= 2 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.384 |
|
| 15386 |
\begin{align*}
3 x^{4} y y^{\prime }&=1-2 x^{3} y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.384 |
|
| 15387 |
\begin{align*}
y^{\prime \prime }-\left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right ) y^{\prime }+\left (\frac {h^{\prime }\left (x \right ) \left (\frac {g^{\prime \prime }\left (x \right )}{g^{\prime }\left (x \right )}+\frac {\left (2 v -1\right ) g^{\prime }\left (x \right )}{g \left (x \right )}+\frac {2 h^{\prime }\left (x \right )}{h \left (x \right )}\right )}{h \left (x \right )}-\frac {h^{\prime \prime }\left (x \right )}{h \left (x \right )}+{g^{\prime }\left (x \right )}^{2}\right ) y&=0 \\
\end{align*} |
✗ |
✓ |
✓ |
✗ |
3.384 |
|
| 15388 |
\begin{align*}
x^{2} y^{\prime }&=y x +3 y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.385 |
|
| 15389 |
\begin{align*}
x&=y y^{\prime }+{y^{\prime }}^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.385 |
|
| 15390 |
\begin{align*}
y^{\prime \prime }+y&={\mathrm e}^{x} \left (x^{2}-1\right ) \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.385 |
|
| 15391 |
\begin{align*}
x^{2} u^{\prime \prime }-3 u^{\prime } x +13 u&=0 \\
u \left (1\right ) &= -1 \\
u^{\prime }\left (1\right ) &= 1 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.386 |
|
| 15392 |
\begin{align*}
y^{\prime }+2 y x&={\mathrm e}^{-x^{2}} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.387 |
|
| 15393 |
\begin{align*}
x^{3} y^{\prime }&=\left (x +1\right ) y^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.388 |
|
| 15394 |
\begin{align*}
\left (x -y\right )^{2} y^{\prime }&=\left (-x -y+1\right )^{2} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.388 |
|
| 15395 |
\begin{align*}
y^{\prime \prime }+6 y^{\prime }+9 y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.388 |
|
| 15396 |
\begin{align*}
y^{\prime \prime }-3 y^{\prime }&={\mathrm e}^{t} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.388 |
|
| 15397 |
\begin{align*}
x \left (-y x +1\right )^{2} y^{\prime }+\left (1+y^{2} x^{2}\right ) y&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.389 |
|
| 15398 |
\begin{align*}
y^{4}+2 y+\left (x y^{3}+2 y^{4}-4 x \right ) y^{\prime }&=0 \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.390 |
|
| 15399 |
\begin{align*}
y^{\prime }&=y^{3} \\
\end{align*} |
✓ |
✓ |
✓ |
✓ |
3.390 |
|
| 15400 |
\begin{align*}
y^{\prime }&=\frac {x -y+\sqrt {y}}{x -y+\sqrt {y}+1} \\
\end{align*} |
✓ |
✓ |
✓ |
✗ |
3.391 |
|