2.2.84 Problems 8301 to 8400

Table 2.169: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

time (sec)

8301

\[ {}{y^{\prime \prime }}^{2} = 1 \]

[[_2nd_order, _quadrature]]

0.217

8302

\[ {}y^{\prime \prime } = x \]

[[_2nd_order, _quadrature]]

1.115

8303

\[ {}{y^{\prime \prime }}^{2} = x \]

[[_2nd_order, _quadrature]]

0.270

8304

\[ {}{y^{\prime \prime }}^{3} = 0 \]

[[_2nd_order, _quadrature]]

0.195

8305

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

1.144

8306

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

0.610

8307

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]

0.129

8308

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

1.359

8309

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

0.630

8310

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

0.224

8311

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

1.370

8312

\[ {}{y^{\prime \prime }}^{2}+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

0.610

8313

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = x \]

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_xy]]

1.145

8314

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

1.610

8315

\[ {}{y^{\prime \prime }}^{2}+y^{\prime }+y = 0 \]

[[_2nd_order, _missing_x]]

0.046

8316

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y = 0 \]

[[_2nd_order, _missing_x]]

0.803

8317

\[ {}y^{\prime \prime }+y^{\prime }+y = 1 \]

[[_2nd_order, _missing_x]]

8.855

8318

\[ {}y^{\prime \prime }+y^{\prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

8.822

8319

\[ {}y^{\prime \prime }+y^{\prime }+y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

9.977

8320

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{2}+x +1 \]

[[_2nd_order, _with_linear_symmetries]]

11.613

8321

\[ {}y^{\prime \prime }+y^{\prime }+y = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

16.318

8322

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

29.197

8323

\[ {}y^{\prime \prime }+y^{\prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

41.556

8324

\[ {}y^{\prime \prime }+y^{\prime } = 1 \]

[[_2nd_order, _missing_x]]

1.372

8325

\[ {}y^{\prime \prime }+y^{\prime } = x \]

[[_2nd_order, _missing_y]]

1.373

8326

\[ {}y^{\prime \prime }+y^{\prime } = x +1 \]

[[_2nd_order, _missing_y]]

1.387

8327

\[ {}y^{\prime \prime }+y^{\prime } = x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

1.446

8328

\[ {}y^{\prime \prime }+y^{\prime } = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _missing_y]]

1.486

8329

\[ {}y^{\prime \prime }+y^{\prime } = \sin \left (x \right ) \]

[[_2nd_order, _missing_y]]

1.648

8330

\[ {}y^{\prime \prime }+y^{\prime } = \cos \left (x \right ) \]

[[_2nd_order, _missing_y]]

1.629

8331

\[ {}y^{\prime \prime }+y = 1 \]

[[_2nd_order, _missing_x]]

1.908

8332

\[ {}y^{\prime \prime }+y = x \]

[[_2nd_order, _with_linear_symmetries]]

1.609

8333

\[ {}y^{\prime \prime }+y = x +1 \]

[[_2nd_order, _with_linear_symmetries]]

1.619

8334

\[ {}y^{\prime \prime }+y = x^{2}+x +1 \]

[[_2nd_order, _with_linear_symmetries]]

1.889

8335

\[ {}y^{\prime \prime }+y = x^{3}+x^{2}+x +1 \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.040

8336

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.293

8337

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.342

8338

\[ {}y {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

10.099

8339

\[ {}y {y^{\prime \prime }}^{2}+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x]]

2.198

8340

\[ {}y^{2} {y^{\prime \prime }}^{2}+y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

5.168

8341

\[ {}y {y^{\prime \prime }}^{4}+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_x]]

48.123

8342

\[ {}y^{3} {y^{\prime \prime }}^{2}+y y^{\prime } = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

0.342

8343

\[ {}y y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_y_y1]]

0.509

8344

\[ {}y {y^{\prime \prime }}^{3}+y^{3} y^{\prime } = 0 \]

[[_2nd_order, _missing_x]]

0.392

8345

\[ {}y {y^{\prime \prime }}^{3}+y^{3} {y^{\prime }}^{5} = 0 \]

[[_2nd_order, _missing_x]]

0.186

8346

\[ {}y^{\prime \prime }+y^{\prime } x +y {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

0.286

8347

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

0.447

8348

\[ {}y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y^{2} {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.086

8349

\[ {}y^{\prime \prime }+\left (\sin \left (x \right )+2 x \right ) y^{\prime }+\cos \left (y\right ) y {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.251

8350

\[ {}y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

1.643

8351

\[ {}y^{\prime \prime } y^{\prime }+y^{n} = 0 \]

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

3.056

8352

\[ {}y^{\prime } = \left (x +y\right )^{4} \]

[[_homogeneous, ‘class C‘], _dAlembert]

154.768

8353

\[ {}y^{\prime \prime }+\left (x +3\right ) y^{\prime }+\left (3+y^{2}\right ) {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.089

8354

\[ {}y^{\prime \prime }+y^{\prime } x +y {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_xy]]

0.284

8355

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+{y^{\prime }}^{2} = 0 \]

[[_2nd_order, _missing_y], _Liouville, [_2nd_order, _reducible, _mu_xy]]

1.072

8356

\[ {}3 y^{\prime \prime }+\cos \left (x \right ) y^{\prime }+\sin \left (y\right ) {y^{\prime }}^{2} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.572

8357

\[ {}10 y^{\prime \prime }+x^{2} y^{\prime }+\frac {3 {y^{\prime }}^{2}}{y} = 0 \]

[_Liouville, [_2nd_order, _with_linear_symmetries], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.294

8358

\[ {}10 y^{\prime \prime }+\left ({\mathrm e}^{x}+3 x \right ) y^{\prime }+\frac {3 \,{\mathrm e}^{y} {y^{\prime }}^{2}}{\sin \left (y\right )} = 0 \]

[_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

0.365

8359

\[ {}y^{\prime \prime }-\frac {2 y}{x^{2}} = x \,{\mathrm e}^{-\sqrt {x}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.184

8360

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.547

8361

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.196

8362

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime } x -c^{2} y = 0 \]

[_Gegenbauer, [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

2.030

8363

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.017

8364

\[ {}x^{2} y^{\prime \prime }-3 y^{\prime } x +3 y = 2 x^{3}-x^{2} \]

[[_2nd_order, _with_linear_symmetries]]

1.784

8365

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 y \csc \left (x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

7.369

8366

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x +1\right ) y^{\prime }+y = 4 \cos \left (\ln \left (x +1\right )\right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

0.835

8367

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.755

8368

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 8 x^{3} \sin \left (x \right )^{2} \]

[[_2nd_order, _linear, _nonhomogeneous]]

29.411

8369

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.128

8370

\[ {}\cos \left (x \right ) y^{\prime \prime }+\sin \left (x \right ) y^{\prime }-2 y \cos \left (x \right )^{3} = 2 \cos \left (x \right )^{5} \]

[[_2nd_order, _linear, _nonhomogeneous]]

3.811

8371

\[ {}y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }+4 x^{2} y \,{\mathrm e}^{-2 x} = 4 \left (x^{3}+x^{2}\right ) {\mathrm e}^{-3 x} \]

[[_2nd_order, _linear, _nonhomogeneous]]

2.773

8372

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+y x = x^{m +1} \]

[[_2nd_order, _with_linear_symmetries]]

1.905

8373

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {\left (x +\sqrt {x}-8\right ) y}{4 x^{2}} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.231

8374

\[ {}\cos \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

[_Lienard]

3.667

8375

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

4.668

8376

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.742

8377

\[ {}y^{\prime \prime }-4 y^{\prime } x +\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

[[_2nd_order, _linear, _nonhomogeneous]]

1.134

8378

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = {\mathrm e}^{x^{2}} \sec \left (x \right ) \]

[[_2nd_order, _linear, _nonhomogeneous]]

5.566

8379

\[ {}x^{2} y^{\prime \prime }-2 y^{\prime } x +2 \left (x^{2}+1\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

2.355

8380

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.298

8381

\[ {}x^{2} y^{\prime \prime }+\left (-y+y^{\prime } x \right )^{2} = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.084

8382

\[ {}x y^{\prime \prime }+2 y^{\prime }-y x = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.234

8383

\[ {}x y^{\prime \prime }+2 y^{\prime }+y x = 0 \]

[_Lienard]

1.418

8384

\[ {}y^{\prime }+y \cot \left (x \right ) = 2 \cos \left (x \right ) \]

[_linear]

1.621

8385

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]

[_rational]

1.336

8386

\[ {}y^{\prime } = x -y^{2} \]

[[_Riccati, _special]]

1.022

8387

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = x \,{\mathrm e}^{x}+3 \,{\mathrm e}^{-2 x} \]

[[_high_order, _linear, _nonhomogeneous]]

0.197

8388

\[ {}x^{2} y^{\prime \prime }-x \left (6+x \right ) y^{\prime }+10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

1.331

8389

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y = 0 \]

[_Bessel]

0.862

8390

\[ {}x^{2} y^{\prime \prime }+y^{\prime } x +\left (x^{2}-5\right ) y = 0 \]

[_Bessel]

1.103

8391

\[ {}x^{2} y^{\prime \prime }-4 y^{\prime } x +6 y = 0 \]

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

1.014

8392

\[ {}y^{\prime \prime \prime }-y x = 0 \]

[[_3rd_order, _with_linear_symmetries]]

0.039

8393

\[ {}y^{\prime } = y^{{1}/{3}} \]
i.c.

[_quadrature]

0.616

8394

\[ {}\left [\begin {array}{c} x^{\prime }=3 x+y \\ y^{\prime }=-x+y \end {array}\right ] \]

system_of_ODEs

0.351

8395

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 y^{\prime } x +2 y = 0 \]

[_Gegenbauer]

0.244

8396

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

0.244

8397

\[ {}\left (x^{2}+3\right ) y^{\prime \prime }-7 y^{\prime } x +16 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.455

8398

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+8 y^{\prime } x +12 y = 0 \]

[_Gegenbauer]

0.227

8399

\[ {}3 y^{\prime \prime }+y^{\prime } x -4 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.265

8400

\[ {}5 y^{\prime \prime }-2 y^{\prime } x +10 y = 0 \]

[[_2nd_order, _with_linear_symmetries]]

0.307