2.2.84 Problems 8301 to 8400

Table 2.169: Main lookup table. Sorted sequentially by problem number.

#

ODE

CAS classification

Solved?

Maple

Mma

Sympy

8301

4x2y+(16x2+1)y=0

[[_2nd_order, _with_linear_symmetries]]

8302

xy+3y+x3y=0

[[_Emden, _Fowler]]

8303

9x2y+9yx+(x636)y=0

[[_2nd_order, _with_linear_symmetries]]

8304

yx2y=0

[[_Emden, _Fowler]]

8305

xy+y7x3y=0

[[_Emden, _Fowler]]

8306

y+y=0

[[_2nd_order, _missing_x]]

8307

x2y+4yx+(x2+2)y=0

[[_2nd_order, _with_linear_symmetries]]

8308

16x2y+32yx+(x412)y=0

[[_2nd_order, _with_linear_symmetries]]

8309

4x2y4yx+(16x2+3)y=0

[[_2nd_order, _with_linear_symmetries]]

8310

2xy+y+y=0

[[_Emden, _Fowler], [_2nd_order, _linear, ‘_with_symmetry_[0,F(x)]‘]]

8311

yyxy=0

[[_2nd_order, _exact, _linear, _homogeneous]]

8312

(x1)y+3y=0

[[_Emden, _Fowler]]

8313

yx2y+xy=0

[[_2nd_order, _with_linear_symmetries]]

8314

xy(x+2)y+2y=0

[_Laguerre]

8315

cos(x)y+y=0

[[_2nd_order, _with_linear_symmetries]]

8316

y+yx+2y=0
i.c.

[[_2nd_order, _with_linear_symmetries]]

8317

(x+2)y+3y=0
i.c.

[[_Emden, _Fowler]]

8318

(12sin(x))y+xy=0

[[_2nd_order, _with_linear_symmetries]]

8319

y+yx+y=0
i.c.

[[_2nd_order, _exact, _linear, _homogeneous]]

8320

xy+(1cos(x))y+x2y=0
i.c.

[[_Emden, _Fowler]]

8321

(ex1x)y+xy=0

[[_2nd_order, _with_linear_symmetries]]

8322

y+x2y+2xy=10x32x+5

[[_2nd_order, _exact, _linear, _nonhomogeneous]]

8323

y+y=1
i.c.

[_quadrature]

8324

y+2y=0
i.c.

[_quadrature]

8325

y+6y=e4t
i.c.

[[_linear, ‘class A‘]]

8326

y+y=2cos(5t)
i.c.

[[_linear, ‘class A‘]]

8327

y+5y+4y=0
i.c.

[[_2nd_order, _missing_x]]

8328

y4y=6e3t3et
i.c.

[[_2nd_order, _missing_y]]

8329

y+y=2sin(2t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8330

y+9y=et
i.c.

[[_2nd_order, _with_linear_symmetries]]

8331

2y+3y3y2y=et
i.c.

[[_3rd_order, _with_linear_symmetries]]

8332

y+2yy2y=sin(3t)
i.c.

[[_3rd_order, _linear, _nonhomogeneous]]

8333

y+y=e3tcos(2t)
i.c.

[[_linear, ‘class A‘]]

8334

y2y+5y=0
i.c.

[[_2nd_order, _missing_x]]

8335

y+4y=e4t
i.c.

[[_linear, ‘class A‘]]

8336

y+y=1+ett
i.c.

[[_linear, ‘class A‘]]

8337

y+2y+y=0
i.c.

[[_2nd_order, _missing_x]]

8338

y4y+4y=t3e2t
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8339

y6y+9y=t
i.c.

[[_2nd_order, _with_linear_symmetries]]

8340

y4y+4y=t3
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8341

y6y+13y=0
i.c.

[[_2nd_order, _missing_x]]

8342

2y+20y+51y=0
i.c.

[[_2nd_order, _missing_x]]

8343

yy=etcos(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8344

y2y+5y=1+t
i.c.

[[_2nd_order, _with_linear_symmetries]]

8345

y+2y+y=0
i.c.

[[_2nd_order, _missing_x]]

8346

y+8y+20y=0
i.c.

[[_2nd_order, _missing_x]]

8347

y+y={00t<151t
i.c.

[[_linear, ‘class A‘]]

8348

y+y={10t<111t
i.c.

[[_linear, ‘class A‘]]

8349

y+y={t0t<101t
i.c.

[[_linear, ‘class A‘]]

8350

y+4y={10t<101t
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8351

y+4y=Heaviside(t2π)sin(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8352

y5y+6y=Heaviside(t1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8353

y+y={00t<π1πt<2π02πt
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8354

y+4y+3y=1Heaviside(t2)Heaviside(t4)+Heaviside(t6)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8355

y+y=tsin(t)
i.c.

[[_linear, ‘class A‘]]

8356

y+y=tetsin(t)
i.c.

[[_linear, ‘class A‘]]

8357

y+9y=cos(3t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8358

y+y=sin(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8359

y+16y={cos(4t)0t<π0πt
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8360

y+y={10t<π2sin(t)π2t
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8361

tyy=2t2
i.c.

[[_2nd_order, _missing_y]]

8362

2y+yt2y=10
i.c.

[[_2nd_order, _with_linear_symmetries]]

8363

y+y=sin(t)+tsin(t)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8364

y3y=δ(t2)
i.c.

[[_linear, ‘class A‘]]

8365

y+y=δ(t1)
i.c.

[[_linear, ‘class A‘]]

8366

y+y=δ(t2π)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8367

y+16y=δ(t2π)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8368

y+y=δ(tπ2)+δ(t3π2)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8369

y+y=δ(t2π)+δ(t4π)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8370

y+2y=δ(t1)
i.c.

[[_2nd_order, _missing_y]]

8371

y2y=1+δ(t2)
i.c.

[[_2nd_order, _missing_y]]

8372

y+4y+5y=δ(t2π)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8373

y+2y+y=δ(t1)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8374

y+4y+13y=δ(tπ)+δ(t3π)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8375

y7y+6y=et+δ(t2)+δ(t4)
i.c.

[[_2nd_order, _linear, _nonhomogeneous]]

8376

y+2y+10y=0
i.c.

[[_2nd_order, _missing_x]]

8377

y+2y+10y=δ(t)

[[_2nd_order, _linear, _nonhomogeneous]]

8378

[x=3x5yy=4x+8y]

system_of_ODEs

8379

[x=4x7yy=5x]

system_of_ODEs

8380

[x=3x+4y9zy=6xyz=10x+4y+3z]

system_of_ODEs

8381

[x=xyy=x+2zz=x+z]

system_of_ODEs

8382

[x=xy+z+t1y=2x+yz3t2z=x+y+z+t2t+2]

system_of_ODEs

8383

[x=3x+4y+etsin(2t)y=5x+9z+4etcos(2t)z=y+6zet]

system_of_ODEs

8384

[x=4x+2y+ety=x+3yet]

system_of_ODEs

8385

[x=7x+5y9z8e2ty=4x+y+z+2e5tz=2y+3z+e5t3e2t]

system_of_ODEs

8386

[x=xy+2z+et3ty=3x4y+z+2et+tz=2x+5y+6z+2ett]

system_of_ODEs

8387

[x=3x7y+4sin(t)+(t4)e4ty=x+y+8sin(t)+(2t+1)e4t]

system_of_ODEs

8388

[x=3x4yy=4x7y]

system_of_ODEs

8389

[x=2x+5yy=2x+4y]

system_of_ODEs

8390

[x=x+y4y=xy]

system_of_ODEs

8391

[x=2x+yy=x]

system_of_ODEs

8392

[x=x+2y+zy=6xyz=x2yz]

system_of_ODEs

8393

[x=x+zy=x+yz=2xz]

system_of_ODEs

8394

[x=x+2yy=4x+3y]

system_of_ODEs

8395

[x=2x+2yy=x+3y]

system_of_ODEs

8396

[x=4x+2yy=5x2+2y]

system_of_ODEs

8397

[x=5x2+2yy=3x42y]

system_of_ODEs

8398

[x=10x5yy=8x12y]

system_of_ODEs

8399

[x=6x+2yy=3x+y]

system_of_ODEs

8400

[x=x+yzy=2yz=yz]

system_of_ODEs