6.139 Problems 13801 to 13900

Table 6.277: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

13801

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

13802

\[ {}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]

13803

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = 0 \]

13804

\[ {}3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0 \]

13805

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]

13806

\[ {}a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y = 0 \]

13807

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

13808

\[ {}y^{\prime \prime }-x y^{\prime }+y = 0 \]

13809

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

13810

\[ {}2 x y^{\prime \prime }+y^{\prime }-2 y = 0 \]

13811

\[ {}y^{\prime \prime }-2 x y^{\prime }-4 y = 0 \]

13812

\[ {}y^{\prime \prime }-2 x y^{\prime }+4 y = 0 \]

13813

\[ {}x \left (1-x \right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

13814

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-x^{2} y = 0 \]

13815

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

13816

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0 \]

13817

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )+t^{2}] \]

13818

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )+\cos \left (2 t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13819

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )+3 y \left (t \right )+{\mathrm e}^{t}] \]

13820

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )-4 y \left (t \right )+{\mathrm e}^{3 t}, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13821

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+5 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+\cos \left (3 t \right )] \]

13822

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )+{\mathrm e}^{2 t}] \]

13823

\[ {}[x^{\prime }\left (t \right ) = 8 x \left (t \right )+14 y \left (t \right ), y^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right )] \]

13833

\[ {}[x^{\prime }\left (t \right ) = 8 x \left (t \right )+14 y \left (t \right ), y^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right )] \]

13834

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )-3 y \left (t \right )] \]

13835

\[ {}[x^{\prime }\left (t \right ) = 11 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+4 y \left (t \right )] \]

13836

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+20 y \left (t \right ), y^{\prime }\left (t \right ) = 40 x \left (t \right )-19 y \left (t \right )] \]

13837

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

13838

\[ {}[x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )] \]

13839

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )+4 y \left (t \right )] \]

13840

\[ {}[x^{\prime }\left (t \right ) = -11 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 13 x \left (t \right )-9 y \left (t \right )] \]

13841

\[ {}[x^{\prime }\left (t \right ) = 7 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 10 x \left (t \right )-3 y \left (t \right )] \]

13842

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

13843

\[ {}[x^{\prime }\left (t \right ) = -6 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right )] \]

13844

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right )] \]

13845

\[ {}[x^{\prime }\left (t \right ) = 13 x \left (t \right ), y^{\prime }\left (t \right ) = 13 y \left (t \right )] \]

13846

\[ {}[x^{\prime }\left (t \right ) = 7 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

13847

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

13848

\[ {}\tan \left (y\right )-\cot \left (x \right ) y^{\prime } = 0 \]

13849

\[ {}12 x +6 y-9+\left (5 x +2 y-3\right ) y^{\prime } = 0 \]

13850

\[ {}x y^{\prime } = \sqrt {x^{2}+y^{2}}+y \]

13851

\[ {}x y^{\prime }+y = x^{3} \]

13852

\[ {}-x y^{\prime }+y = x^{2} y y^{\prime } \]

13853

\[ {}x^{\prime }+3 x = {\mathrm e}^{2 t} \]

13854

\[ {}y \sin \left (x \right )+y^{\prime } \cos \left (x \right ) = 1 \]

13855

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

13856

\[ {}x^{\prime } = x+\sin \left (t \right ) \]

13857

\[ {}x \left (\ln \left (x \right )-\ln \left (y\right )\right ) y^{\prime }-y = 0 \]

13858

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

13859

\[ {}{y^{\prime }}^{2} = 9 y^{4} \]

13860

\[ {}x^{\prime } = {\mathrm e}^{\frac {x}{t}}+\frac {x}{t} \]

13861

\[ {}x^{2}+{y^{\prime }}^{2} = 1 \]

13862

\[ {}y = x y^{\prime }+\frac {1}{y} \]

13863

\[ {}x = {y^{\prime }}^{3}-y^{\prime }+2 \]

13864

\[ {}y^{\prime } = \frac {y}{x +y^{3}} \]

13865

\[ {}y = {y^{\prime }}^{4}-{y^{\prime }}^{3}-2 \]

13866

\[ {}{y^{\prime }}^{2}+y^{2} = 4 \]

13867

\[ {}y^{\prime } = \frac {2 y-x -4}{2 x -y+5} \]

13868

\[ {}y^{\prime }-\frac {y}{1+x}+y^{2} = 0 \]

13869

\[ {}y^{\prime } = y^{2}+x \]

13870

\[ {}y^{\prime } = x y^{3}+x^{2} \]

13871

\[ {}y^{\prime } = x^{2}-y^{2} \]

13872

\[ {}2 x +2 y-1+\left (x +y-2\right ) y^{\prime } = 0 \]

13873

\[ {}{y^{\prime }}^{3}-y^{\prime } {\mathrm e}^{2 x} = 0 \]

13874

\[ {}y = 5 x y^{\prime }-{y^{\prime }}^{2} \]

13875

\[ {}y^{\prime } = x -y^{2} \]

13876

\[ {}y^{\prime } = \left (x -5 y\right )^{{1}/{3}}+2 \]

13877

\[ {}y \left (x -y\right )-x^{2} y^{\prime } = 0 \]

13878

\[ {}x^{\prime }+5 x = 10 t +2 \]

13879

\[ {}x^{\prime } = \frac {x}{t}+\frac {x^{2}}{t^{3}} \]

13880

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

13881

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

13882

\[ {}y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

13883

\[ {}x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

13884

\[ {}y = x^{2}+2 x y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

13885

\[ {}y^{\prime }-\frac {3 y}{x}+y^{2} x^{3} = 0 \]

13886

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = a \]

13887

\[ {}x^{2}-y+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

13888

\[ {}3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \]

13889

\[ {}y \left (x -y\right )-x^{2} y^{\prime } = 0 \]

13890

\[ {}y^{\prime } = \frac {x +y-3}{y-x +1} \]

13891

\[ {}x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

13892

\[ {}\left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

13893

\[ {}\left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

13894

\[ {}\left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \]

13895

\[ {}\left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

13896

\[ {}3 y^{2} y^{\prime } x +y^{3}-2 x = 0 \]

13897

\[ {}{y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

13898

\[ {}{y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

13899

\[ {}{y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

13900

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]