6.140 Problems 13901 to 14000

Table 6.279: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

13901

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

13902

\[ {}y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

13903

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

13904

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

13905

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

13906

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

13907

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

13908

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

13909

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

13910

\[ {}y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

13911

\[ {}{y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

13912

\[ {}x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

13913

\[ {}x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

13914

\[ {}y^{\prime \prime }+4 x y = 0 \]

13915

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

13916

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

13917

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]

13918

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

13919

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

13920

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

13921

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

13922

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

13923

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

13924

\[ {}y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

13925

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

13926

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

13927

\[ {}m x^{\prime \prime } = f \left (x\right ) \]

13928

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

13929

\[ {}y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

13930

\[ {}x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

13931

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 2 \cos \left (\ln \left (1+x \right )\right ) \]

13932

\[ {}x^{3} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13933

\[ {}x^{\prime \prime \prime \prime }+x = t^{3} \]

13934

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

13935

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

13936

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

13937

\[ {}y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

13938

\[ {}y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

13939

\[ {}6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

13940

\[ {}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

13941

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

13942

\[ {}y^{\prime \prime } = 2 y^{3} \]

13943

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

13944

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

13945

\[ {}[x^{\prime }\left (t \right )+5 x \left (t \right )+y \left (t \right ) = {\mathrm e}^{t}, y^{\prime }\left (t \right )-x \left (t \right )-3 y \left (t \right ) = {\mathrm e}^{2 t}] \]

13946

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )] \]

13947

\[ {}\left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )^{2}}{x \left (t \right )}\right ] \]

13948

\[ {}y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

13949

\[ {}x^{2} y^{\prime } = 1+y^{2} \]

13950

\[ {}y^{\prime } = \sin \left (x y\right ) \]

13951

\[ {}x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \]

13952

\[ {}y^{\prime } = \cos \left (x +y\right ) \]

13953

\[ {}x y^{\prime }+y = x y^{2} \]

13954

\[ {}y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \]

13955

\[ {}y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \]

13956

\[ {}y^{\prime } = \ln \left (x y\right ) \]

13957

\[ {}x \left (1+y\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

13958

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

13959

\[ {}y^{\prime \prime \prime }+x y = \sin \left (x \right ) \]

13960

\[ {}y^{\prime \prime }+y y^{\prime } = 1 \]

13961

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

13962

\[ {}y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

13963

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

13964

\[ {}y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

13965

\[ {}y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

13966

\[ {}y y^{\prime } = 1 \]

13967

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

13968

\[ {}5 y^{\prime }-x y = 0 \]

13969

\[ {}{y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

13970

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

13971

\[ {}y^{\prime \prime \prime } = 1 \]

13972

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

13973

\[ {}y^{\prime \prime } = x^{2}+y \]

13974

\[ {}y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

13975

\[ {}{y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

13976

\[ {}\sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

13977

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

13978

\[ {}y y^{\prime \prime } = 1 \]

13979

\[ {}{y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]

13980

\[ {}y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13981

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

13982

\[ {}2 y^{\prime \prime }-3 y^{\prime }-2 y = 0 \]

13983

\[ {}3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

13984

\[ {}\left (x -3\right ) y^{\prime \prime }+y \ln \left (x \right ) = x^{2} \]

13985

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cot \left (x \right ) = 0 \]

13986

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

13987

\[ {}x y^{\prime \prime }+2 x^{2} y^{\prime }+y \sin \left (x \right ) = \sinh \left (x \right ) \]

13988

\[ {}\sin \left (x \right ) y^{\prime \prime }+x y^{\prime }+7 y = 1 \]

13989

\[ {}y^{\prime \prime }-\left (x -1\right ) y^{\prime }+x^{2} y = \tan \left (x \right ) \]

13990

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

13991

\[ {}x^{2} y^{\prime \prime }-4 x^{2} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

13992

\[ {}y^{\prime \prime }+\frac {k x}{y^{4}} = 0 \]

13993

\[ {}y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

13994

\[ {}x y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

13995

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+4 x y = 2 x \]

13996

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+y = 1-2 x \]

13997

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+2\right ) y = 0 \]

13998

\[ {}x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y = 0 \]

13999

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+2 x y = 2 x \]

14000

\[ {}\ln \left (x^{2}+1\right ) y^{\prime \prime }+\frac {4 x y^{\prime }}{x^{2}+1}+\frac {\left (-x^{2}+1\right ) y}{\left (x^{2}+1\right )^{2}} = 0 \]