6.145 Problems 14401 to 14500

Table 6.289: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

14401

\[ {}y^{\prime } = \frac {1}{x -1} \]

14402

\[ {}y^{\prime } = \frac {1}{x -1} \]

14403

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]

14404

\[ {}y^{\prime } = \frac {1}{x^{2}-1} \]

14405

\[ {}y^{\prime } = \tan \left (x \right ) \]

14406

\[ {}y^{\prime } = \tan \left (x \right ) \]

14407

\[ {}y^{\prime } = 3 y \]

14408

\[ {}y^{\prime } = 1-y \]

14409

\[ {}y^{\prime } = 1-y \]

14410

\[ {}y^{\prime } = x \,{\mathrm e}^{y-x^{2}} \]

14411

\[ {}y^{\prime } = \frac {y}{x} \]

14412

\[ {}y^{\prime } = \frac {2 x}{y} \]

14413

\[ {}y^{\prime } = -2 y+y^{2} \]

14414

\[ {}y^{\prime } = x y+x \]

14415

\[ {}x \,{\mathrm e}^{y}+y^{\prime } = 0 \]

14416

\[ {}y-x^{2} y^{\prime } = 0 \]

14417

\[ {}2 y y^{\prime } = 1 \]

14418

\[ {}2 x y y^{\prime }+y^{2} = -1 \]

14419

\[ {}y^{\prime } = \frac {1-x y}{x^{2}} \]

14420

\[ {}y^{\prime } = -\frac {y \left (y+2 x \right )}{x \left (x +2 y\right )} \]

14421

\[ {}y^{\prime } = \frac {y^{2}}{1-x y} \]

14422

\[ {}y^{\prime } = 1+4 y \]

14423

\[ {}y^{\prime } = x y+2 \]

14424

\[ {}y^{\prime } = \frac {y}{x} \]

14425

\[ {}y^{\prime } = \frac {y}{x -1}+x^{2} \]

14426

\[ {}y^{\prime } = \frac {y}{x}+\sin \left (x^{2}\right ) \]

14427

\[ {}y^{\prime } = \frac {2 y}{x}+{\mathrm e}^{x} \]

14428

\[ {}y^{\prime } = y \cot \left (x \right )+\sin \left (x \right ) \]

14429

\[ {}x -y y^{\prime } = 0 \]

14430

\[ {}-x y^{\prime }+y = 0 \]

14431

\[ {}x^{2}-y+x y^{\prime } = 0 \]

14432

\[ {}x y \left (1-y\right )-2 y^{\prime } = 0 \]

14433

\[ {}x \left (1-y^{3}\right )-3 y^{\prime } y^{2} = 0 \]

14434

\[ {}y \left (2 x -1\right )+x \left (1+x \right ) y^{\prime } = 0 \]

14435

\[ {}y^{\prime } = \frac {1}{x -1} \]

14436

\[ {}y^{\prime } = x +y \]

14437

\[ {}y^{\prime } = \frac {y}{x} \]

14438

\[ {}y^{\prime } = \frac {y}{x} \]

14439

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

14440

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

14441

\[ {}y^{\prime } = \frac {y}{-x^{2}+1}+\sqrt {x} \]

14442

\[ {}y^{\prime } = y^{2} \]

14443

\[ {}y^{\prime } = y^{2} \]

14444

\[ {}y^{\prime } = y^{2} \]

14445

\[ {}y^{\prime } = y^{3} \]

14446

\[ {}y^{\prime } = y^{3} \]

14447

\[ {}y^{\prime } = y^{3} \]

14448

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]

14449

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]

14450

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]

14451

\[ {}y^{\prime } = -\frac {3 x^{2}}{2 y} \]

14452

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

14453

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

14454

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

14455

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

14456

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]

14457

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]

14458

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]

14459

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]

14460

\[ {}y^{\prime } = 3 x y^{{1}/{3}} \]

14461

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]

14462

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]

14463

\[ {}y^{\prime } = \sqrt {\left (y+2\right ) \left (y-1\right )} \]

14464

\[ {}y^{\prime } = \frac {y}{y-x} \]

14465

\[ {}y^{\prime } = \frac {y}{y-x} \]

14466

\[ {}y^{\prime } = \frac {y}{y-x} \]

14467

\[ {}y^{\prime } = \frac {y}{y-x} \]

14468

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

14469

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

14470

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

14471

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]

14472

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]

14473

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]

14474

\[ {}y^{\prime } = x \sqrt {1-y^{2}} \]

14475

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

14476

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

14477

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

14478

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

14479

\[ {}y^{\prime } = -\frac {x}{2}+\frac {\sqrt {x^{2}+4 y}}{2} \]

14480

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]

14481

\[ {}x y^{\prime \prime \prime }+x y^{\prime } = 4 \]

14482

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

14483

\[ {}x \left (x -3\right ) y^{\prime \prime }+3 y^{\prime } = x^{2} \]

14484

\[ {}\sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]

14485

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = x \,{\mathrm e}^{x} \]

14486

\[ {}y^{\prime \prime }-y = 0 \]

14487

\[ {}y^{\prime \prime }+y = 0 \]

14488

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

14489

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

14490

\[ {}y^{\prime \prime }-y = 0 \]

14491

\[ {}y^{\prime \prime \prime }+y^{\prime } = 0 \]

14492

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

14493

\[ {}y^{\prime \prime }-4 y = 31 \]

14494

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]

14495

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = -3 x -\frac {3}{x} \]

14496

\[ {}4 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

14497

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+6 y^{\prime }-4 y = 0 \]

14498

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

14499

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

14500

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+8 y^{\prime \prime }-8 y^{\prime }+4 y = 0 \]