6.181 Problems 18001 to 18100

Table 6.361: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

18001

\[ {} x y^{\prime } = \left (-2 x^{2}+1\right ) \tan \left (y\right ) \]

18002

\[ {} y^{\prime } = 2 x y \]

18003

\[ {} y^{\prime } \sin \left (y\right ) = x^{2} \]

18004

\[ {} \sin \left (x \right ) y^{\prime } = 1 \]

18005

\[ {} y^{\prime }+\tan \left (x \right ) y = 0 \]

18006

\[ {} y^{\prime }-\tan \left (x \right ) y = 0 \]

18007

\[ {} \left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

18008

\[ {} y \ln \left (y\right )-x y^{\prime } = 0 \]

18009

\[ {} y^{\prime } = x \,{\mathrm e}^{x} \]

18010

\[ {} y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]

18011

\[ {} y^{\prime } = \ln \left (x \right ) \]

18012

\[ {} \left (x^{2}-1\right ) y^{\prime } = 1 \]

18013

\[ {} x \left (x^{2}-4\right ) y^{\prime } = 1 \]

18014

\[ {} \left (1+x \right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]

18015

\[ {} y^{\prime } = {\mathrm e}^{3 x -2 y} \]

18016

\[ {} x y^{\prime } = 2 x^{2}+1 \]

18017

\[ {} {\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

18018

\[ {} 3 \cos \left (3 x \right ) \cos \left (2 y\right )-2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]

18019

\[ {} y^{\prime } = {\mathrm e}^{x} \cos \left (x \right ) \]

18020

\[ {} x y y^{\prime } = \left (1+x \right ) \left (y+1\right ) \]

18021

\[ {} y^{\prime } = 2 x y+1 \]

18022

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

18023

\[ {} 2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

18024

\[ {} v^{\prime } = g -\frac {k v^{2}}{m} \]

18025

\[ {} x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

18026

\[ {} x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

18027

\[ {} x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \]

18028

\[ {} x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

18029

\[ {} x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

18030

\[ {} x -y-\left (x +y\right ) y^{\prime } = 0 \]

18031

\[ {} x y^{\prime } = 2 x +3 y \]

18032

\[ {} x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

18033

\[ {} x^{2} y^{\prime } = 2 x y+y^{2} \]

18034

\[ {} x^{3}+y^{3}-x y^{2} y^{\prime } = 0 \]

18035

\[ {} y^{\prime } = \left (x +y\right )^{2} \]

18036

\[ {} y^{\prime } = \sin \left (x -y+1\right )^{2} \]

18037

\[ {} y^{\prime } = \frac {x +y+4}{x -y-6} \]

18038

\[ {} y^{\prime } = \frac {x +y+4}{x +y-6} \]

18039

\[ {} 2 x -2 y+\left (-1+y\right ) y^{\prime } = 0 \]

18040

\[ {} y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

18041

\[ {} 2 x +3 y-1-4 \left (1+x \right ) y^{\prime } = 0 \]

18042

\[ {} y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

18043

\[ {} y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

18044

\[ {} y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

18045

\[ {} \left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

18046

\[ {} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

18047

\[ {} y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

18048

\[ {} y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

18049

\[ {} \cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

18050

\[ {} \left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

18051

\[ {} -\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

18052

\[ {} 1+y+\left (1-x \right ) y^{\prime } = 0 \]

18053

\[ {} 2 x y^{3}+\cos \left (x \right ) y+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

18054

\[ {} 1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \]

18055

\[ {} 2 y^{4} x +\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

18056

\[ {} \frac {x y^{\prime }+y}{1-x^{2} y^{2}}+x = 0 \]

18057

\[ {} 2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

18058

\[ {} x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

18059

\[ {} {\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

18060

\[ {} 1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

18061

\[ {} \frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

18062

\[ {} 3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

18063

\[ {} \frac {y-x y^{\prime }}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

18064

\[ {} \frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

18065

\[ {} \left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

18066

\[ {} x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

18067

\[ {} x y^{\prime }+y+3 x^{3} y^{4} y^{\prime } = 0 \]

18068

\[ {} {\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

18069

\[ {} \left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

18070

\[ {} y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

18071

\[ {} x +3 y^{2}+2 x y y^{\prime } = 0 \]

18072

\[ {} y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

18073

\[ {} y \ln \left (y\right )-2 x y+\left (x +y\right ) y^{\prime } = 0 \]

18074

\[ {} y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0 \]

18075

\[ {} x^{3}+x y^{3}+3 y^{2} y^{\prime } = 0 \]

18076

\[ {} x y^{\prime }-y = \left (1+y^{2}\right ) y^{\prime } \]

18077

\[ {} y-x y^{\prime } = x y^{3} y^{\prime } \]

18078

\[ {} x y^{\prime } = x^{5}+x^{3} y^{2}+y \]

18079

\[ {} \left (x +y\right ) y^{\prime } = y-x \]

18080

\[ {} x y^{\prime } = y+x^{2}+9 y^{2} \]

18081

\[ {} y^{2}-y+x y^{\prime } = 0 \]

18082

\[ {} x y^{\prime }-y = 2 x^{2}-3 \]

18083

\[ {} x y^{\prime }+y = \sqrt {x y}\, y^{\prime } \]

18084

\[ {} y-x y^{2}+\left (x +x^{2} y^{2}\right ) y^{\prime } = 0 \]

18085

\[ {} x y^{\prime }-y = x^{2} y^{4} \left (x y^{\prime }+y\right ) \]

18086

\[ {} x y^{\prime }+y+x^{2} y^{5} y^{\prime } = 0 \]

18087

\[ {} 2 x y^{2}-y+x y^{\prime } = 0 \]

18088

\[ {} y^{\prime }+\frac {y}{x} = \sin \left (x \right ) \]

18089

\[ {} y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right ) \]

18090

\[ {} x y^{\prime }-3 y = x^{4} \]

18091

\[ {} y^{\prime }+y = \frac {1}{1+{\mathrm e}^{2 x}} \]

18092

\[ {} \left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \left (x \right ) \]

18093

\[ {} y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2} \]

18094

\[ {} y^{\prime }+\cot \left (x \right ) y = 2 x \csc \left (x \right ) \]

18095

\[ {} 2 y-x^{3} = x y^{\prime } \]

18096

\[ {} y-x +x y \cot \left (x \right )+x y^{\prime } = 0 \]

18097

\[ {} y^{\prime }-2 x y = 6 x \,{\mathrm e}^{x^{2}} \]

18098

\[ {} x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \]

18099

\[ {} y-2 x y-x^{2}+x^{2} y^{\prime } = 0 \]

18100

\[ {} x y^{\prime }+y = x^{4} y^{3} \]