6.184 Problems 18301 to 18400

Table 6.367: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

18301

\[ {}4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

18302

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 0 \]

18303

\[ {}16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

18304

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

18305

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

18306

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

18307

\[ {}y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

18308

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

18309

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

18310

\[ {}y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

18311

\[ {}y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

18312

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

18313

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

18314

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

18315

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

18316

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

18317

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

18318

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

18319

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

18320

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

18321

\[ {}x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0 \]

18322

\[ {}y^{\prime \prime }+3 x y^{\prime }+x^{2} y = 0 \]

18323

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

18324

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

18325

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

18326

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

18327

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

18328

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

18329

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

18330

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

18331

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

18332

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

18333

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

18334

\[ {}y^{\prime \prime }+k^{2} y = \sin \left (b x \right ) \]

18335

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

18336

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

18337

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]

18338

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

18339

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

18340

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

18341

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

18342

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

18343

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

18344

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

18345

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

18346

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

18347

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

18348

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

18349

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

18350

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

18351

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

18352

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]

18353

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (1+x \right )^{2} \]

18354

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

18355

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

18356

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

18357

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

18358

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

18359

\[ {}y^{\prime \prime \prime }-y = 0 \]

18360

\[ {}y^{\prime \prime \prime }+y = 0 \]

18361

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

18362

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

18363

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

18364

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

18365

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

18366

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

18367

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

18368

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

18369

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

18370

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

18371

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

18372

\[ {}y^{\prime \prime \prime \prime } = 0 \]

18373

\[ {}y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

18374

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

18375

\[ {}y^{\prime \prime \prime }-y^{\prime } = 1 \]

18376

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime } = 0 \]

18377

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

18378

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

18379

\[ {}x^{3} y^{\prime \prime \prime \prime }+8 x^{2} y^{\prime \prime \prime }+8 x y^{\prime \prime }-8 y^{\prime } = 0 \]

18380

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \]

18381

\[ {}y^{\prime \prime }-y = x^{2} {\mathrm e}^{2 x} \]

18382

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 10 x^{3} {\mathrm e}^{-2 x} \]

18383

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

18384

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \]

18385

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \,{\mathrm e}^{5 x} \]

18386

\[ {}y^{\prime \prime }-y^{\prime }+y = x^{3}-3 x^{2}+1 \]

18387

\[ {}y^{\prime \prime \prime }-2 y^{\prime }+y = 2 x^{3}-3 x^{2}+4 x +5 \]

18388

\[ {}4 y^{\prime \prime }+y = x^{4} \]

18389

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime } = x^{2} \]

18390

\[ {}y^{\left (6\right )}-y = x^{10} \]

18391

\[ {}y^{\prime \prime }+y^{\prime }-y = -x^{4}+3 x \]

18392

\[ {}y^{\prime \prime }+y = x^{4} \]

18393

\[ {}y^{\prime \prime \prime }-y^{\prime \prime } = 12 x -2 \]

18394

\[ {}y^{\prime \prime \prime }+y^{\prime \prime } = 9 x^{2}-2 x +1 \]

18395

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} {\mathrm e}^{2 x} \]

18396

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = {\mathrm e}^{2 x} \left (x^{3}-5 x^{2}\right ) \]

18397

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \]

18398

\[ {}y^{\prime \prime \prime }-8 y = 16 x^{2} \]

18399

\[ {}y^{\prime \prime \prime \prime }-y = -x^{3}+1 \]

18400

\[ {}y^{\prime \prime \prime }-\frac {y^{\prime }}{4} = x \]