6.182 Problems 18101 to 18200

Table 6.363: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

18101

\[ {} x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right ) \]

18102

\[ {} x y^{\prime }+y = x y^{2} \]

18103

\[ {} \left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2} \]

18104

\[ {} y-x y^{\prime } = y^{\prime } y^{2} {\mathrm e}^{y} \]

18105

\[ {} x y^{\prime }+2 = x^{3} \left (-1+y\right ) y^{\prime } \]

18106

\[ {} x y^{\prime } = 2 x^{2} y+y \ln \left (y\right ) \]

18107

\[ {} y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right ) \]

18108

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

18109

\[ {} x y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3} \]

18110

\[ {} y^{\prime \prime }-k y = 0 \]

18111

\[ {} x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2} \]

18112

\[ {} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

18113

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

18114

\[ {} x y^{\prime \prime }+y^{\prime } = 4 x \]

18115

\[ {} \left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

18116

\[ {} y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2} \]

18117

\[ {} y^{\prime \prime } = y^{\prime } {\mathrm e}^{y} \]

18118

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

18119

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

18120

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

18121

\[ {} \left (1-x y\right ) y^{\prime } = y^{2} \]

18122

\[ {} 2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0 \]

18123

\[ {} x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

18124

\[ {} y^{2} = \left (x^{3}-x y\right ) y^{\prime } \]

18125

\[ {} x^{2} y^{3}+y = \left (x^{3} y^{2}-x \right ) y^{\prime } \]

18126

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}-2 y y^{\prime } = 0 \]

18127

\[ {} x y^{\prime }+y = y^{2}+x^{2} y^{\prime } \]

18128

\[ {} x y y^{\prime } = y^{2}+x^{2} y^{\prime } \]

18129

\[ {} \left ({\mathrm e}^{x}-3 x^{2} y^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3} \]

18130

\[ {} y^{\prime \prime }+2 x {y^{\prime }}^{2} = 0 \]

18131

\[ {} y+x^{2} = x y^{\prime } \]

18132

\[ {} x y^{\prime }+y = x^{2} \cos \left (x \right ) \]

18133

\[ {} 6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0 \]

18134

\[ {} \cos \left (x +y\right ) = x \sin \left (x +y\right )+x \sin \left (x +y\right ) y^{\prime } \]

18135

\[ {} x^{2} y^{\prime \prime }+x y^{\prime } = 1 \]

18136

\[ {} y^{2} {\mathrm e}^{x y}+\cos \left (x \right )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0 \]

18137

\[ {} y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right ) \]

18138

\[ {} y^{\prime }+2 x y = {\mathrm e}^{-x^{2}} \]

18139

\[ {} y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime } \]

18140

\[ {} \left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{3} \]

18141

\[ {} {\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{x} \cos \left (y\right ) y^{\prime } = y \sin \left (x y\right )+x \sin \left (x y\right ) y^{\prime } \]

18142

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 0 \]

18143

\[ {} \left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x \]

18144

\[ {} \left (1+x \right ) {\mathrm e}^{x} = \left (x \,{\mathrm e}^{x}-y \,{\mathrm e}^{y}\right ) y^{\prime } \]

18145

\[ {} x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0 \]

18146

\[ {} y^{\prime } = 1+3 \tan \left (x \right ) y \]

18147

\[ {} y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}} \]

18148

\[ {} y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}} \]

18149

\[ {} y^{\prime } = \frac {x +2 y+2}{y-2 x} \]

18150

\[ {} 3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y} = 0 \]

18151

\[ {} \frac {3 y^{2}}{x^{2}+3 x}+\left (2 y \ln \left (\frac {5 x}{x +3}\right )+3 \sin \left (y\right )\right ) y^{\prime } = 0 \]

18152

\[ {} \frac {y-x}{\left (x +y\right )^{3}}-\frac {2 x y^{\prime }}{\left (x +y\right )^{3}} = 0 \]

18153

\[ {} x y^{2}+y+x y^{\prime } = 0 \]

18154

\[ {} x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right ) \]

18155

\[ {} 3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

18156

\[ {} x \left (x^{2}+1\right ) y^{\prime }+2 y = \left (x^{2}+1\right )^{3} \]

18157

\[ {} y^{\prime } = \frac {-3 x -2 y-1}{2 x +3 y-1} \]

18158

\[ {} {\mathrm e}^{x^{2} y} \left (1+2 x^{2} y\right )+x^{3} {\mathrm e}^{x^{2} y} y^{\prime } = 0 \]

18159

\[ {} 3 x^{2} {\mathrm e}^{y}-2 x +\left (x^{3} {\mathrm e}^{y}-\sin \left (y\right )\right ) y^{\prime } = 0 \]

18160

\[ {} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

18161

\[ {} 3 x y+y^{2}+\left (3 x y+x^{2}\right ) y^{\prime } = 0 \]

18162

\[ {} x^{2} y^{\prime } = y^{2}+x y+x^{2} \]

18163

\[ {} x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

18164

\[ {} \frac {\cos \left (y\right )}{x +3}-\left (\sin \left (y\right ) \ln \left (5 x +15\right )-\frac {1}{y}\right ) y^{\prime } = 0 \]

18165

\[ {} x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

18166

\[ {} x y+y-1+x y^{\prime } = 0 \]

18167

\[ {} x^{2} y^{\prime }-y^{2} = 2 x y \]

18168

\[ {} y^{\prime \prime } = 2 y {y^{\prime }}^{3} \]

18169

\[ {} x^{\prime }+x \cot \left (y \right ) = \sec \left (y \right ) \]

18170

\[ {} x y^{\prime \prime }-y^{\prime } = 3 x^{2} \]

18171

\[ {} x y^{\prime \prime }+y^{\prime } = 0 \]

18172

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 4 x \]

18173

\[ {} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 1 \]

18174

\[ {} y^{\prime \prime }-2 y^{\prime } = 6 \]

18175

\[ {} y^{\prime \prime }-2 y = \sin \left (x \right ) \]

18176

\[ {} y^{\prime \prime } = {\mathrm e}^{x} \]

18177

\[ {} y^{\prime \prime }-2 y^{\prime } = 4 \]

18178

\[ {} y^{\prime \prime }-y = \sin \left (x \right ) \]

18179

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

18180

\[ {} y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x} \]

18181

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y = 0 \]

18182

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

18183

\[ {} y^{\prime \prime }-y = 0 \]

18184

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

18185

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

18186

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

18187

\[ {} x^{2} y^{\prime \prime }-2 y = 0 \]

18188

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

18189

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

18190

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

18191

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

18192

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

18193

\[ {} y^{\prime \prime }+y = 0 \]

18194

\[ {} y^{\prime \prime }-y = 0 \]

18195

\[ {} x y^{\prime \prime }+3 y^{\prime } = 0 \]

18196

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

18197

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

18198

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

18199

\[ {} y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

18200

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]