|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} x y^{2} y^{\prime }+y^{3} = x \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = x y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left ({\mathrm e}^{y}-2 x y\right ) y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y-x y^{\prime } = y^{\prime } y^{2} {\mathrm e}^{y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+2 = x^{3} \left (-1+y\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = 2 x^{2} y+y \ln \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } \sin \left (2 x \right ) = 2 y+2 \cos \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-k y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime } = 2 x y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }+y^{\prime } = 4 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+2 y^{\prime }\right ) y^{\prime \prime }+2 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime \prime } = y^{2} y^{\prime }+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = y^{\prime } {\mathrm e}^{y}
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1-x y\right ) y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{2} = \left (x^{3}-x y\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{3}+y = \left (x^{3} y^{2}-x \right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime \prime }+{y^{\prime }}^{2}-2 y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime }+y = y^{2}+x^{2} y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y y^{\prime } = y^{2}+x^{2} y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left ({\mathrm e}^{x}-3 x^{2} y^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+2 x {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y+x^{2} = x y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = x^{2} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \cos \left (x +y\right ) = x \sin \left (x +y\right )+x \sin \left (x +y\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2} {\mathrm e}^{x y}+\cos \left (x \right )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 x y = {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {\mathrm e}^{x} \sin \left (y\right )+{\mathrm e}^{x} \cos \left (y\right ) y^{\prime } = y \sin \left (x y\right )+x \sin \left (x y\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime \prime } = 2 x y-{\mathrm e}^{y}-x
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} \left (1+x \right ) {\mathrm e}^{x} = \left (x \,{\mathrm e}^{x}-y \,{\mathrm e}^{y}\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{4}+x^{6}-x^{3} y^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 1+3 \tan \left (x \right ) y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 1+\frac {y}{x}-\frac {y^{2}}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {2 x y \,{\mathrm e}^{\frac {x^{2}}{y^{2}}}}{y^{2}+y^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}+2 x^{2} {\mathrm e}^{\frac {x^{2}}{y^{2}}}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {x +2 y+2}{y-2 x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x^{2} \ln \left (y\right )+\frac {x^{3} y^{\prime }}{y} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {3 y^{2}}{x^{2}+3 x}+\left (2 y \ln \left (\frac {5 x}{x +3}\right )+3 \sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {y-x}{\left (x +y\right )^{3}}-\frac {2 x y^{\prime }}{\left (x +y\right )^{3}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{2}+y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime } = y^{\prime } \left (3 x -2 y^{\prime }\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x^{2} y-y^{3}-\left (3 x y^{2}-x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x \left (x^{2}+1\right ) y^{\prime }+2 y = \left (x^{2}+1\right )^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {-3 x -2 y-1}{2 x +3 y-1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {\mathrm e}^{x^{2} y} \left (1+2 x^{2} y\right )+x^{3} {\mathrm e}^{x^{2} y} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x^{2} {\mathrm e}^{y}-2 x +\left (x^{3} {\mathrm e}^{y}-\sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{2} y^{\prime \prime }+{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 x y+y^{2}+\left (3 x y+x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime } = y^{2}+x y+x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = y^{2} \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \frac {\cos \left (y\right )}{x +3}-\left (\sin \left (y\right ) \ln \left (5 x +15\right )-\frac {1}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y+y-1+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime }-y^{2} = 2 x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = 2 y {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{\prime }+x \cot \left (y \right ) = \sec \left (y \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }-y^{\prime } = 3 x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y^{\prime }-2 y = 4 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+x y = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime } = 6
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-2 y^{\prime } = 4
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-3 y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+5 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }+3 y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|