6.185 Problems 18401 to 18500

Table 6.369: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

18401

\[ {}y^{\prime \prime \prime \prime } = \frac {1}{x^{3}} \]

18402

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = 1+x \]

18403

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime } = x \]

18404

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = {\mathrm e}^{2 x} \]

18405

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x} \]

18406

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \sin \left (x \right ) {\mathrm e}^{2 x} \]

18407

\[ {}y^{\prime } = 2 x y \]

18408

\[ {}y^{\prime }+y = 1 \]

18409

\[ {}x y^{\prime } = y \]

18410

\[ {}x^{2} y^{\prime } = y \]

18411

\[ {}y^{\prime } = 1+y^{2} \]

18412

\[ {}y^{\prime } = x -y \]

18413

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

18414

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

18415

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

18416

\[ {}y^{\prime \prime }+y^{\prime }-x y = 0 \]

18417

\[ {}y^{\prime \prime }+x y = 0 \]

18418

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+n^{2} y = 0 \]

18419

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 n y = 0 \]

18420

\[ {}x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

18421

\[ {}x^{2} \left (x^{2}-1\right )^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

18422

\[ {}x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

18423

\[ {}\left (1+3 x \right ) x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+2 y = 0 \]

18424

\[ {}y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18425

\[ {}x y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18426

\[ {}x^{2} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18427

\[ {}x^{3} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18428

\[ {}x^{4} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18429

\[ {}x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 x y = 0 \]

18430

\[ {}4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

18431

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

18432

\[ {}2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

18433

\[ {}2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+3 y = 0 \]

18434

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-\left (1+x \right ) y = 0 \]

18435

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

18436

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

18437

\[ {}y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}} = 0 \]

18438

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (4 x +4\right ) y = 0 \]

18439

\[ {}4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

18440

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

18441

\[ {}x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

18442

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

18443

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

18444

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

18445

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

18446

\[ {}\left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

18447

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

18448

\[ {}\left (x^{2}-x -6\right ) y^{\prime \prime }+\left (3 x +5\right ) y^{\prime }+y = 0 \]

18449

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-3 x \right ) y^{\prime }-y = 0 \]

18450

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

18451

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0 \]

18452

\[ {}y^{\prime }+y = 3 \,{\mathrm e}^{2 x} \]

18453

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

18454

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \]

18455

\[ {}y^{\prime \prime }+y^{\prime } = 3 x^{2} \]

18456

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (x \right ) {\mathrm e}^{-x} \]

18457

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

18458

\[ {}x y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-\left (4 x +9\right ) y = 0 \]

18459

\[ {}x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y = 3 \,{\mathrm e}^{-x} \]

18460

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

18461

\[ {}y^{\prime \prime }+a^{2} y = f \left (x \right ) \]

18462

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 t} \]

18463

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]

18464

\[ {}y^{\prime \prime }-y^{\prime } = t^{2} \]

18465

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = f \left (t \right ) \]

18466

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

18467

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )] \]

18468

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+t -1, y^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right )-5 t -2] \]

18469

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

18470

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )] \]

18471

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

18472

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right )] \]

18473

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

18474

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \]

18475

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )] \]

18476

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

18477

\[ {}[x^{\prime }\left (t \right ) = 7 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right )] \]

18478

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+5 y \left (t \right )] \]

18479

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-5 t +2, y^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )-8 t -8] \]

18480

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right ), y^{\prime }\left (t \right ) = 3 y \left (t \right )] \]

18481

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right )] \]

18482

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

18483

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -17 x \left (t \right )-5 y \left (t \right )] \]

18484

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

18485

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \]

18486

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )+2 y \left (t \right )] \]

18487

\[ {}x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5} = 0 \]

18488

\[ {}x^{\prime } = 3 t^{2}+4 t \]

18489

\[ {}x^{\prime } = b \,{\mathrm e}^{t} \]

18490

\[ {}x^{\prime } = \frac {1}{t^{2}+1} \]

18491

\[ {}x^{\prime } = \frac {1}{\sqrt {t^{2}+1}} \]

18492

\[ {}x^{\prime } = \cos \left (t \right ) \]

18493

\[ {}x^{\prime } = \frac {\cos \left (t \right )}{\sin \left (t \right )} \]

18494

\[ {}x^{\prime } = x^{2}-3 x+2 \]

18495

\[ {}x^{\prime } = b \,{\mathrm e}^{x} \]

18496

\[ {}x^{\prime } = \left (x-1\right )^{2} \]

18497

\[ {}x^{\prime } = \sqrt {x^{2}-1} \]

18498

\[ {}x^{\prime } = 2 \sqrt {x} \]

18499

\[ {}x^{\prime } = \tan \left (x\right ) \]

18500

\[ {}3 t^{2} x-t x+\left (3 t^{3} x^{2}+t^{3} x^{4}\right ) x^{\prime } = 0 \]