6.194 Problems 19301 to 19400

Table 6.387: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

19301

\[ {}x^{2}+y = {y^{\prime }}^{2} \]

19302

\[ {}{y^{\prime }}^{3} = y^{4} \left (x y^{\prime }+y\right ) \]

19303

\[ {}\left (1-y^{\prime }\right )^{2}-{\mathrm e}^{-2 y} = {y^{\prime }}^{2} {\mathrm e}^{-2 x} \]

19304

\[ {}a x y {y^{\prime }}^{2}+\left (x^{2}-y^{2} a -b \right ) y^{\prime }-x y = 0 \]

19305

\[ {}{y^{\prime }}^{2} = \left (1+4 y\right ) \left (y^{\prime }-y\right ) \]

19306

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+b^{2}-y^{2} = 0 \]

19307

\[ {}x y {y^{\prime }}^{2}-\left (y^{2}+x^{2}-1\right ) y^{\prime }+x y = 0 \]

19308

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-x y = 0 \]

19309

\[ {}8 {y^{\prime }}^{3} x = y \left (12 {y^{\prime }}^{2}-9\right ) \]

19310

\[ {}4 {y^{\prime }}^{2} x^{2} \left (x -1\right )-4 y^{\prime } x y \left (4 x -3\right )+\left (16 x -9\right ) y^{2} = 0 \]

19311

\[ {}\left (y^{2}+x^{2} y^{\prime }\right ) \left (x y^{\prime }+y\right ) = \left (1+y^{\prime }\right )^{2} \]

19312

\[ {}-x y^{\prime }+y = a \left (y^{2}+y^{\prime }\right ) \]

19313

\[ {}-x y^{\prime }+y = b \left (1+x^{2} y^{\prime }\right ) \]

19314

\[ {}\left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime } \]

19315

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

19316

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

19317

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-2 y = 0 \]

19318

\[ {}x^{2} y^{\prime \prime \prime }-2 y^{\prime } = 0 \]

19319

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = \ln \left (x \right )^{2} \]

19320

\[ {}y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1 \]

19321

\[ {}x^{2} y^{\prime \prime \prime }+x y^{\prime \prime }-4 y^{\prime } = 0 \]

19322

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

19323

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0 \]

19324

\[ {}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = 0 \]

19325

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

19326

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5} \]

19327

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4} \]

19328

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \]

19329

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4} \]

19330

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

19331

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m} \]

19332

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime } = \ln \left (x \right ) \]

19333

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

19334

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = x \]

19335

\[ {}x^{2} y^{\prime \prime \prime }+3 x y^{\prime \prime }+2 y^{\prime } = x \]

19336

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 4 x \]

19337

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4 \]

19338

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (1+x \right )^{2} \]

19339

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = x^{2}+\frac {1}{x^{2}} \]

19340

\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right ) \]

19341

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = x \ln \left (x \right ) \]

19342

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = x^{2} \sin \left (\ln \left (x \right )\right ) \]

19343

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = x \ln \left (x \right ) \]

19344

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2} \]

19345

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y = 0 \]

19346

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime } = \left (2 x +3\right ) \left (2 x +4\right ) \]

19347

\[ {}x y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

19348

\[ {}y^{\prime \prime }+{\mathrm e}^{x} \left (y^{\prime }+y\right ) = {\mathrm e}^{x} \]

19349

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19350

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+8 x y^{\prime }+2 y = x^{2}+3 x -4 \]

19351

\[ {}x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

19352

\[ {}y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

19353

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y = 0 \]

19354

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y = 0 \]

19355

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 2 x \]

19356

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }+\left (3+6 x \right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19357

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2}+y y^{\prime } = 0 \]

19358

\[ {}\left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y = 0 \]

19359

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \]

19360

\[ {}x^{2} y^{\prime \prime \prime }+4 x y^{\prime \prime }+\left (x^{2}+2\right ) y^{\prime }+3 x y = 2 \]

19361

\[ {}x^{5} y^{\left (6\right )}+x^{4} y^{\left (5\right )}+x y^{\prime }+y = \ln \left (x \right ) \]

19362

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x \]

19363

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

19364

\[ {}y^{\prime \prime \prime } = f \left (x \right ) \]

19365

\[ {}y^{2}+\left (2 x y-1\right ) y^{\prime }+x y^{\prime \prime }+x^{2} y^{\prime \prime \prime } = 0 \]

19366

\[ {}y^{\prime \prime } = x +\sin \left (x \right ) \]

19367

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

19368

\[ {}y^{\prime \prime } \cos \left (x \right )^{2} = 1 \]

19369

\[ {}x^{3} y^{\prime \prime \prime } = 1 \]

19370

\[ {}y^{\prime \prime } = \frac {a}{x} \]

19371

\[ {}y^{\prime \prime \prime } \csc \left (x \right )^{2} = 1 \]

19372

\[ {}y^{\prime \prime } \sqrt {a^{2}+x^{2}} = x \]

19373

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

19374

\[ {}y^{\prime \prime } = y \]

19375

\[ {}y^{3} y^{\prime \prime } = a \]

19376

\[ {}y^{\prime \prime }-a^{2} y = 0 \]

19377

\[ {}y^{\prime \prime }+\frac {a^{2}}{y} = 0 \]

19378

\[ {}y^{\prime \prime } = y^{3}-y \]

19379

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]

19380

\[ {}y^{\prime \prime } = x y^{\prime } \]

19381

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19382

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

19383

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

19384

\[ {}x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4 \]

19385

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

19386

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+a x = 0 \]

19387

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = a x \]

19388

\[ {}x y^{\prime \prime }+x {y^{\prime }}^{2}-y^{\prime } = 0 \]

19389

\[ {}x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

19390

\[ {}y^{\prime }-x y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

19391

\[ {}x y^{\prime \prime }+y^{\prime } = x \]

19392

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2}}{a} = 0 \]

19393

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

19394

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

19395

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2}+y^{\prime } = 0 \]

19396

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{2} = 0 \]

19397

\[ {}y^{\prime \prime } = a {y^{\prime }}^{2} \]

19398

\[ {}1+{y^{\prime }}^{2}+y y^{\prime \prime } = 0 \]

19399

\[ {}y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19400

\[ {}a y^{\prime \prime } = y^{\prime } \]