6.190 Problems 18901 to 19000

Table 6.379: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

18901

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

18902

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

18903

\[ {} \left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} \left (x +y\right )+x y^{\prime }+y = 0 \]

18904

\[ {} y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

18905

\[ {} \left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y = 0 \]

18906

\[ {} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x \]

18907

\[ {} y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]

18908

\[ {} {y^{\prime }}^{2}-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} \]

18909

\[ {} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}} \]

18910

\[ {} y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

18911

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

18912

\[ {} \sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0 \]

18913

\[ {} x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0 \]

18914

\[ {} y^{\prime \prime } = \frac {a}{x} \]

18915

\[ {} y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

18916

\[ {} y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

18917

\[ {} y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

18918

\[ {} y^{\prime \prime \prime }+\cos \left (x \right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y = \sin \left (2 x \right ) \]

18919

\[ {} \sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

18920

\[ {} a y^{\prime \prime } = y^{\prime } \]

18921

\[ {} y^{3} y^{\prime \prime } = a \]

18922

\[ {} y^{\prime \prime \prime } = f \left (x \right ) \]

18923

\[ {} y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

18924

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = {\mathrm e}^{x} \]

18925

\[ {} y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

18926

\[ {} \left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

18927

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

18928

\[ {} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

18929

\[ {} a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

18930

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

18931

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

18932

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = 0 \]

18933

\[ {} x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

18934

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

18935

\[ {} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y = 0 \]

18936

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

18937

\[ {} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

18938

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

18939

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

18940

\[ {} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

18941

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

18942

\[ {} \left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+3 \left (x -2\right ) y = 0 \]

18943

\[ {} y^{\prime \prime }-2 b y^{\prime }+b^{2} x^{2} y = 0 \]

18944

\[ {} y^{\prime \prime }+4 x y^{\prime }+4 x^{2} y = 0 \]

18945

\[ {} x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

18946

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

18947

\[ {} \left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0 \]

18948

\[ {} x^{2} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

18949

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

18950

\[ {} y^{\prime \prime }+x y^{\prime }-y = f \left (x \right ) \]

18951

\[ {} x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

18952

\[ {} \left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

18953

\[ {} \left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

18954

\[ {} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

18955

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

18956

\[ {} x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

18957

\[ {} [x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )+y \left (t \right ) = 0, y^{\prime }\left (t \right )+5 x \left (t \right )+3 y \left (t \right ) = 0] \]

18958

\[ {} [x^{\prime }\left (t \right )-7 x \left (t \right )+y \left (t \right ) = 0, y^{\prime }\left (t \right )-2 x \left (t \right )-5 y \left (t \right ) = 0] \]

18959

\[ {} [x^{\prime }\left (t \right )+2 x \left (t \right )-3 y \left (t \right ) = t, y^{\prime }\left (t \right )-3 x \left (t \right )+2 y \left (t \right ) = {\mathrm e}^{2 t}] \]

18960

\[ {} [4 x^{\prime }\left (t \right )+9 y^{\prime }\left (t \right )+44 x \left (t \right )+49 y \left (t \right ) = t, 3 x^{\prime }\left (t \right )+7 y^{\prime }\left (t \right )+34 x \left (t \right )+38 y \left (t \right ) = {\mathrm e}^{t}] \]

18961

\[ {} [x^{\prime \prime }\left (t \right )-3 x \left (t \right )-4 y \left (t \right ) = 0, y^{\prime \prime }\left (t \right )+x \left (t \right )+y \left (t \right ) = 0] \]

18962

\[ {} [x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right )-2 x \left (t \right )+2 y \left (t \right ) = 3 \,{\mathrm e}^{t}, 3 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 x \left (t \right )+y \left (t \right ) = 4 \,{\mathrm e}^{2 t}] \]

18963

\[ {} [4 x^{\prime }\left (t \right )+9 y^{\prime }\left (t \right )+2 x \left (t \right )+31 y \left (t \right ) = {\mathrm e}^{t}, 3 x^{\prime }\left (t \right )+7 y^{\prime }\left (t \right )+x \left (t \right )+24 y \left (t \right ) = 3] \]

18964

\[ {} [x^{\prime }\left (t \right )+4 x \left (t \right )+3 y \left (t \right ) = t, y^{\prime }\left (t \right )+2 x \left (t \right )+5 y \left (t \right ) = {\mathrm e}^{t}] \]

18965

\[ {} [x^{\prime }\left (t \right ) = n y \left (t \right )-m z \left (t \right ), y^{\prime }\left (t \right ) = L z \left (t \right )-m x \left (t \right ), z^{\prime }\left (t \right ) = m x \left (t \right )-L y \left (t \right )] \]

18966

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x} \]

18967

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{r} = 0 \]

18968

\[ {} y+x +x y^{\prime } = 0 \]

18969

\[ {} y \left (1+x y\right )-x y^{\prime } = 0 \]

18970

\[ {} \sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y+y^{2} = 0 \]

18971

\[ {} \left (x +y\right ) y^{\prime }+y-x = 0 \]

18972

\[ {} x +y y^{\prime }+\frac {x y^{\prime }-y}{x^{2}+y^{2}} = 0 \]

18973

\[ {} x^{3}+3 x y^{2}+\left (y^{3}+3 x^{2} y\right ) y^{\prime } = 0 \]

18974

\[ {} x y^{\prime }+y = y^{2} \ln \left (x \right ) \]

18975

\[ {} \left (-x^{2}+1\right ) y^{\prime }-2 x y = -x^{3}+x \]

18976

\[ {} x y^{\prime }-y-\cos \left (\frac {1}{x}\right ) = 0 \]

18977

\[ {} x +y y^{\prime } = m \left (x y^{\prime }-y\right ) \]

18978

\[ {} x \cos \left (y\right )^{2} = y \cos \left (x \right )^{2} y^{\prime } \]

18979

\[ {} y^{\prime } = {\mathrm e}^{x -y}+x^{2} {\mathrm e}^{-y} \]

18980

\[ {} x^{2} y^{\prime }+y = 1 \]

18981

\[ {} 2 y+\left (x^{2}+1\right ) \arctan \left (x \right ) y^{\prime } = 0 \]

18982

\[ {} x y^{2}+x +\left (x^{2} y+y\right ) y^{\prime } = 0 \]

18983

\[ {} y^{\prime } = {\mathrm e}^{x +y}+x^{2} {\mathrm e}^{y} \]

18984

\[ {} \left (3+2 \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime } = 1+2 \sin \left (y\right )+\cos \left (y\right ) \]

18985

\[ {} \frac {\cos \left (y\right )^{2} y^{\prime }}{x}+\frac {\cos \left (x \right )^{2}}{y} = 0 \]

18986

\[ {} \left (1+{\mathrm e}^{x}\right ) y y^{\prime } = \left (y+1\right ) {\mathrm e}^{x} \]

18987

\[ {} \csc \left (x \right ) \ln \left (y\right ) y^{\prime }+x^{2} y^{2} = 0 \]

18988

\[ {} y^{\prime } = \frac {\sin \left (x \right )+x \cos \left (x \right )}{y \left (2 \ln \left (y\right )+1\right )} \]

18989

\[ {} \cos \left (y\right ) \ln \left (\sec \left (x \right )+\tan \left (x \right )\right ) = \cos \left (x \right ) \ln \left (\sec \left (y\right )+\tan \left (y\right )\right ) y^{\prime } \]

18990

\[ {} \left (x^{2}-x^{2} y\right ) y^{\prime }+y^{2}+x y^{2} = 0 \]

18991

\[ {} \left (\sin \left (y\right )+y \cos \left (y\right )\right ) y^{\prime }-\left (2 \ln \left (x \right )+1\right ) x = 0 \]

18992

\[ {} 3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

18993

\[ {} y-x y^{\prime } = a \left (y^{2}+y^{\prime }\right ) \]

18994

\[ {} \left (x +y-1\right ) y^{\prime } = x +y+1 \]

18995

\[ {} \left (2 x +2 y+1\right ) y^{\prime } = x +y+1 \]

18996

\[ {} \left (2 x +3 y-5\right ) y^{\prime }+2 x +3 y-1 = 0 \]

18997

\[ {} \left (x^{2}+y^{2}\right ) y^{\prime } = x^{2}+x y \]

18998

\[ {} \left (x \cos \left (\frac {y}{x}\right )+y \sin \left (\frac {y}{x}\right )\right ) y-\left (y \sin \left (\frac {y}{x}\right )-x \cos \left (\frac {y}{x}\right )\right ) x y^{\prime } = 0 \]

18999

\[ {} x^{2}-y^{2}+2 x y y^{\prime } = 0 \]

19000

\[ {} y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \]