6.195 Problems 19401 to 19500

Table 6.389: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

19401

\[ {}a^{2} y^{\prime \prime } y^{\prime } = x \]

19402

\[ {}y^{\prime \prime \prime } y^{\prime \prime } = 2 \]

19403

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

19404

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

19405

\[ {}y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2} \]

19406

\[ {}a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2} \]

19407

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

19408

\[ {}y^{\prime } = x y^{\prime \prime }+\sqrt {1+{y^{\prime }}^{2}} \]

19409

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

19410

\[ {}y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19411

\[ {}y^{\left (5\right )}-n^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

19412

\[ {}x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19413

\[ {}x^{2} y^{\prime \prime \prime \prime } = \lambda y^{\prime \prime } \]

19414

\[ {}n \,x^{3} y^{\prime \prime \prime } = -x y^{\prime }+y \]

19415

\[ {}x y y^{\prime \prime }+x {y^{\prime }}^{2} = 3 y y^{\prime } \]

19416

\[ {}2 x^{2} y y^{\prime \prime }+y^{2} = x^{2} {y^{\prime }}^{2} \]

19417

\[ {}x^{2} y^{\prime \prime } = \sqrt {m \,x^{2} {y^{\prime }}^{3}+y^{2} n} \]

19418

\[ {}x^{4} y^{\prime \prime } = \left (x^{3}+2 x y\right ) y^{\prime }-4 y^{2} \]

19419

\[ {}x^{4} y^{\prime \prime }-x^{3} y^{\prime } = x^{2} {y^{\prime }}^{2}-4 y^{2} \]

19420

\[ {}x^{2} y^{\prime \prime }+4 y^{2}-6 y = x^{4} {y^{\prime }}^{2} \]

19421

\[ {}y^{\prime \prime } = {\mathrm e}^{y} \]

19422

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

19423

\[ {}a y^{\prime \prime \prime } = y^{\prime \prime } \]

19424

\[ {}x^{2} y^{\prime \prime \prime \prime }+1 = 0 \]

19425

\[ {}y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

19426

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

19427

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19428

\[ {}-a y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

19429

\[ {}\sin \left (y\right )^{3} y^{\prime \prime } = \cos \left (y\right ) \]

19430

\[ {}{\mathrm e}^{x} \left (x y^{\prime \prime }-y^{\prime }\right ) = x^{3} \]

19431

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

19432

\[ {}2 x y^{\prime \prime \prime } y^{\prime \prime } = {y^{\prime \prime }}^{2}-a^{2} \]

19433

\[ {}y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

19434

\[ {}\left (x^{3}-4 x \right ) y^{\prime \prime \prime }+\left (9 x^{2}-4\right ) y^{\prime \prime }+18 x y^{\prime }+6 y = 6 \]

19435

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

19436

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

19437

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime } = y+{\mathrm e}^{x} \]

19438

\[ {}\left (1+x \right ) y^{\prime \prime }-2 \left (x +3\right ) y^{\prime }+\left (x +5\right ) y = {\mathrm e}^{x} \]

19439

\[ {}\left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

19440

\[ {}y^{\prime \prime }+x y^{\prime }-y = X \]

19441

\[ {}y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime }+x y = 0 \]

19442

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19443

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+\left (x +2\right ) y = {\mathrm e}^{x} x^{3} \]

19444

\[ {}y^{\prime \prime }-a x y^{\prime }+a^{2} \left (x -1\right ) y = 0 \]

19445

\[ {}\left (2 x^{3}-a \right ) y^{\prime \prime }-6 x^{2} y^{\prime }+6 x y = 0 \]

19446

\[ {}y^{\prime \prime }+4 x y^{\prime }+4 x^{2} y = 0 \]

19447

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

19448

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

19449

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = 0 \]

19450

\[ {}y^{\prime \prime }-2 b x y^{\prime }+b^{2} x^{2} y = x \]

19451

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{3}+6 x^{2}+4\right ) y = 0 \]

19452

\[ {}x^{2} y^{\prime \prime }+\left (-4 x^{2}+x \right ) y^{\prime }+\left (4 x^{2}-2 x +1\right ) y = 0 \]

19453

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = \sec \left (x \right ) {\mathrm e}^{x} \]

19454

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

19455

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

19456

\[ {}y^{\prime \prime }+2 n \cot \left (n x \right ) y^{\prime }+\left (m^{2}-n^{2}\right ) y = 0 \]

19457

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

19458

\[ {}x^{2} y^{\prime \prime }-2 n x y^{\prime }+\left (a^{2} x^{2}+n^{2}+n \right ) y = 0 \]

19459

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-3\right ) y = {\mathrm e}^{x^{2}} \]

19460

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

19461

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

19462

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

19463

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+m^{2} y = 0 \]

19464

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }-\sin \left (x \right )^{2} y = 0 \]

19465

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }+\sin \left (x \right ) \cos \left (x \right ) y^{\prime }+y = 0 \]

19466

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

19467

\[ {}y^{\prime \prime }+\left (\tan \left (x \right )-1\right )^{2} y^{\prime }-n \left (n -1\right ) y \sec \left (x \right )^{4} = 0 \]

19468

\[ {}y^{\prime \prime }+\left (3 \sin \left (x \right )-\cot \left (x \right )\right ) y^{\prime }+2 \sin \left (x \right )^{2} y = 0 \]

19469

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

19470

\[ {}x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-2 y = x^{2} \]

19471

\[ {}x^{2} y^{\prime \prime }+y^{\prime }-\left (x^{2}+1\right ) y = {\mathrm e}^{-x} \]

19472

\[ {}\left (x +2\right ) y^{\prime \prime }-\left (5+2 x \right ) y^{\prime }+2 y = \left (1+x \right ) {\mathrm e}^{x} \]

19473

\[ {}y^{\prime \prime }+y = x \]

19474

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

19475

\[ {}y^{\prime \prime }+4 y = 4 \tan \left (2 x \right ) \]

19476

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

19477

\[ {}y^{\prime \prime }-y = \frac {2}{1+{\mathrm e}^{x}} \]

19478

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-4 x y^{\prime }-\left (x^{2}+1\right ) y = x \]

19479

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = -4 x^{3} \]

19480

\[ {}x y^{\prime }-y = \left (x -1\right ) \left (y^{\prime \prime }-x +1\right ) \]

19481

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2} = 0 \]

19482

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

19483

\[ {}\left (x^{2}+a \right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

19484

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

19485

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = x^{3}+3 x \]

19486

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

19487

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

19488

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\frac {a^{2} y}{-x^{2}+1} = 0 \]

19489

\[ {}\left (2 x -1\right ) y^{\prime \prime }-2 y^{\prime }+\left (3-2 x \right ) y = 2 \,{\mathrm e}^{x} \]

19490

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 8 x^{3} \]

19491

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+5\right ) y = x \,{\mathrm e}^{-\frac {x^{2}}{2}} \]

19492

\[ {}x \left (-x^{2}+1\right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) \left (3 x^{2}+1\right ) y^{\prime }+4 x \left (x^{2}+1\right ) y = 0 \]

19493

\[ {}y^{\prime \prime }+\left (1-\frac {2}{x^{2}}\right ) y = x^{2} \]

19494

\[ {}\left (x^{3}-2 x^{2}\right ) y^{\prime \prime }+2 x^{2} y^{\prime }-12 \left (x -2\right ) y = 0 \]

19495

\[ {}x y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+\left (x +2\right ) y = \left (x -2\right ) {\mathrm e}^{2 x} \]

19496

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

19497

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

19498

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

19499

\[ {}x y^{\prime \prime } \left (x \cos \left (x \right )-2 \sin \left (x \right )\right )+\left (x^{2}+2\right ) y^{\prime } \sin \left (x \right )-2 \left (x \sin \left (x \right )+\cos \left (x \right )\right ) y = 0 \]

19500

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]