6.26 Problems 2501 to 2600

Table 6.51: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

2501

\[ {}y^{\prime } = \frac {2 y}{t}+\frac {y^{2}}{t^{2}} \]

2502

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]

2503

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

2504

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

2505

\[ {}y^{\prime } = \frac {y+t}{t -y} \]

2506

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

2507

\[ {}y^{\prime } = \frac {t +y+1}{t -y+3} \]

2508

\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

2509

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

2510

\[ {}2 t \sin \left (y\right )+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \left (y\right )+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

2511

\[ {}1+{\mathrm e}^{t y} \left (1+t y\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

2512

\[ {}\sec \left (t \right ) \tan \left (t \right )+\sec \left (t \right )^{2} y+\left (\tan \left (t \right )+2 y\right ) y^{\prime } = 0 \]

2513

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

2514

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]

2515

\[ {}2 t \cos \left (y\right )+3 t^{2} y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

2516

\[ {}3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

2517

\[ {}2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]

2518

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]

2519

\[ {}y^{\prime } = 2 t \left (y+1\right ) \]

2520

\[ {}y^{\prime } = t^{2}+y^{2} \]

2521

\[ {}y^{\prime } = {\mathrm e}^{t}+y^{2} \]

2522

\[ {}y^{\prime } = y^{2}+\cos \left (t \right )^{2} \]

2523

\[ {}y^{\prime } = 1+y+y^{2} \cos \left (t \right ) \]

2524

\[ {}y^{\prime } = t +y^{2} \]

2525

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2526

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2527

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]

2528

\[ {}y^{\prime } = y+{\mathrm e}^{-y}+{\mathrm e}^{-t} \]

2529

\[ {}y^{\prime } = y^{3}+{\mathrm e}^{-5 t} \]

2530

\[ {}y^{\prime } = {\mathrm e}^{\left (y-t \right )^{2}} \]

2531

\[ {}y^{\prime } = \left (4 y+{\mathrm e}^{-t^{2}}\right ) {\mathrm e}^{2 y} \]

2532

\[ {}y^{\prime } = {\mathrm e}^{-t}+\ln \left (1+y^{2}\right ) \]

2533

\[ {}y^{\prime } = \frac {\left (1+\cos \left (4 t \right )\right ) y}{4}-\frac {\left (1-\cos \left (4 t \right )\right ) y^{2}}{800} \]

2534

\[ {}y^{\prime } = t^{2}+y^{2} \]

2535

\[ {}y^{\prime } = t \left (y+1\right ) \]

2536

\[ {}y^{\prime } = t y^{a} \]

2537

\[ {}y^{\prime } = t \sqrt {1-y^{2}} \]

2538

\[ {}y^{\prime } = y+{\mathrm e}^{-y}+2 t \]

2539

\[ {}y^{\prime } = 1-t +y^{2} \]

2540

\[ {}y^{\prime } = \frac {t^{2}+y^{2}}{1+t +y^{2}} \]

2541

\[ {}y^{\prime } = {\mathrm e}^{t} y^{2}-2 y \]

2542

\[ {}y^{\prime } = t y^{3}-y \]

2543

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

2544

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]

2545

\[ {}y^{\prime \prime }-y = 0 \]

2546

\[ {}6 y^{\prime \prime }-7 y^{\prime }+y = 0 \]

2547

\[ {}y^{\prime \prime }-3 y^{\prime }+y = 0 \]

2548

\[ {}3 y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

2549

\[ {}y^{\prime \prime }-3 y^{\prime }-4 y = 0 \]

2550

\[ {}2 y^{\prime \prime }+y^{\prime }-10 y = 0 \]

2551

\[ {}5 y^{\prime \prime }+5 y^{\prime }-y = 0 \]

2552

\[ {}y^{\prime \prime }-6 y^{\prime }+y = 0 \]

2553

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

2554

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

2555

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y = 0 \]

2556

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

2557

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

2558

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

2559

\[ {}4 y^{\prime \prime }-y^{\prime }+y = 0 \]

2560

\[ {}y^{\prime \prime }+y^{\prime }+2 y = 0 \]

2561

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

2562

\[ {}2 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

2563

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = 0 \]

2564

\[ {}y^{\prime \prime }+w^{2} y = 0 \]

2565

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2566

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

2567

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

2568

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

2569

\[ {}9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

2570

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

2571

\[ {}6 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

2572

\[ {}9 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

2573

\[ {}y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

2574

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

2575

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2576

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2577

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

2578

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

2579

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

2580

\[ {}t y^{\prime \prime }-\left (1+3 t \right ) y^{\prime }+3 y = 0 \]

2581

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2582

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2583

\[ {}y^{\prime \prime }+y = \sec \left (t \right ) \]

2584

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t \,{\mathrm e}^{2 t} \]

2585

\[ {}2 y^{\prime \prime }-3 y^{\prime }+y = \left (t^{2}+1\right ) {\mathrm e}^{t} \]

2586

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = t \,{\mathrm e}^{3 t}+1 \]

2587

\[ {}3 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (t \right ) {\mathrm e}^{-t} \]

2588

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t^{{5}/{2}} {\mathrm e}^{-2 t} \]

2589

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sqrt {t +1} \]

2590

\[ {}y^{\prime \prime }-y = f \left (t \right ) \]

2591

\[ {}t^{2} y^{\prime \prime }-2 y = t^{2} \]

2592

\[ {}y^{\prime \prime }+p \left (t \right ) y^{\prime }+q \left (t \right ) y = t +1 \]

2593

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

2594

\[ {}y^{\prime \prime }+3 y = t^{3}-1 \]

2595

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = t \,{\mathrm e}^{\alpha t} \]

2596

\[ {}y^{\prime \prime }-y = t^{2} {\mathrm e}^{t} \]

2597

\[ {}y^{\prime \prime }+y^{\prime }+y = t^{2}+t +1 \]

2598

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

2599

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = t^{2} {\mathrm e}^{7 t} \]

2600

\[ {}y^{\prime \prime }+4 y = t \sin \left (2 t \right ) \]