6.42 Problems 4101 to 4200

Table 6.83: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

4101

\[ {} y^{\prime }-y \tan \left (x \right ) = x \]

4102

\[ {} y^{\prime } = {\mathrm e}^{x -2 y} \]

4103

\[ {} y^{\prime } = \frac {x^{2}+y^{2}}{2 x^{2}} \]

4104

\[ {} x y^{\prime } = x +y \]

4105

\[ {} {\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

4106

\[ {} y^{\prime } = {\mathrm e}^{x} \sin \left (x \right ) \]

4107

\[ {} y^{\prime }-3 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x} \]

4108

\[ {} y^{\prime } = x +\frac {1}{x} \]

4109

\[ {} x y^{\prime }+2 y = \left (3 x +2\right ) {\mathrm e}^{3 x} \]

4110

\[ {} 2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0 \]

4111

\[ {} x y y^{\prime } = \left (1+x \right ) \left (y+1\right ) \]

4112

\[ {} y^{\prime } = \frac {2 x -y}{y+2 x} \]

4113

\[ {} y^{\prime } = \frac {3 x -y+1}{3 y-x +5} \]

4114

\[ {} 3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

4115

\[ {} x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right ) \]

4116

\[ {} y^{\prime } \cos \left (x \right )+y \sin \left (x \right ) = 1 \]

4117

\[ {} \left (x +y^{2}\right ) y^{\prime }+y-x^{2} = 0 \]

4118

\[ {} y^{\prime \prime }+8 y^{\prime }+15 y = 0 \]

4119

\[ {} y^{\prime \prime }+2 y^{\prime }-15 y = 0 \]

4120

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

4121

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

4122

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

4123

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

4124

\[ {} 2 y^{\prime \prime }+3 y^{\prime } = 0 \]

4125

\[ {} y^{\prime \prime }+25 y = 0 \]

4126

\[ {} 4 y^{\prime \prime }+y^{\prime }+y = 0 \]

4127

\[ {} y^{\prime \prime } = 0 \]

4128

\[ {} y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

4129

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 1 \]

4130

\[ {} y^{\prime \prime }+y^{\prime }-2 y = -2 x^{2}+2 x +2 \]

4131

\[ {} y^{\prime \prime }+y = x^{3}+x \]

4132

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \]

4133

\[ {} y^{\prime \prime }+2 y = x +{\mathrm e}^{2 x} \]

4134

\[ {} y^{\prime \prime }+2 y = {\mathrm e}^{x}+2 \]

4135

\[ {} y^{\prime \prime }-y = 2 \,{\mathrm e}^{x} \]

4136

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

4137

\[ {} y^{\prime \prime }-y = 4 x \,{\mathrm e}^{x} \]

4138

\[ {} y^{\prime \prime }-2 y^{\prime }+3 y = x^{3}+\sin \left (x \right ) \]

4139

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

4140

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}+2 \]

4141

\[ {} y^{\prime \prime }+2 n y^{\prime }+n^{2} y = A \cos \left (p x \right ) \]

4142

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

4143

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-12 y = 0 \]

4144

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

4145

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 0 \]

4146

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

4147

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

4148

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

4149

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

4150

\[ {} y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0 \]

4151

\[ {} y^{\prime \prime \prime }-y = 0 \]

4152

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left (x \right ) \]

4153

\[ {} y^{\prime \prime }+2 y^{\prime }-2 y = x^{2}+1 \]

4154

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{2}+\frac {y}{8} = \frac {\sin \left (x \right )}{8}-\frac {\cos \left (x \right )}{4} \]

4155

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x}-2 \,{\mathrm e}^{2 x}+\sin \left (x \right ) \]

4156

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = x^{3} {\mathrm e}^{2 x}+x \,{\mathrm e}^{2 x} \]

4157

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (2 x \right ) x \]

4158

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{x} \sin \left (x \right ) \]

4159

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x} \]

4160

\[ {} y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = \cos \left (2 x +3\right ) \]

4161

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

4162

\[ {} y^{\prime \prime }+9 y = 8 \sin \left (x \right ) \]

4163

\[ {} 25 y^{\prime \prime }-30 y^{\prime }+9 y = 0 \]

4164

\[ {} 9 y^{\prime \prime }-6 y^{\prime }+y = \left (4 x^{2}+24 x +18\right ) {\mathrm e}^{x} \]

4165

\[ {} x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

4166

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 3 y_{2} \left (x \right )-2 y_{1} \left (x \right )] \]

4167

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 3 y_{2} \left (x \right )-y_{1} \left (x \right )] \]

4168

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )-y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )+3 y_{2} \left (x \right )] \]

4169

\[ {} [y_{1}^{\prime }\left (x \right ) = 4 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 4 y_{2} \left (x \right )-y_{1} \left (x \right )] \]

4170

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )-y_{2} \left (x \right )] \]

4171

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )] \]

4172

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right )-y_{1} \left (x \right ), y_{2}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )-4 y_{2} \left (x \right )] \]

4173

\[ {} [2 y_{1}^{\prime }\left (x \right ) = y_{1} \left (x \right )+y_{2} \left (x \right ), 2 y_{2}^{\prime }\left (x \right ) = 5 y_{2} \left (x \right )-3 y_{1} \left (x \right )] \]

4174

\[ {} [y_{1}^{\prime }\left (x \right ) = -2 y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{1} \left (x \right )+2 y_{2} \left (x \right )] \]

4175

\[ {} [y_{1}^{\prime }\left (x \right ) = 1, y_{2}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right )] \]

4176

\[ {} [2 y_{1}^{\prime }\left (x \right )+y_{2}^{\prime }\left (x \right )-4 y_{1} \left (x \right )-y_{2} \left (x \right ) = {\mathrm e}^{x}, y_{1}^{\prime }\left (x \right )+3 y_{1} \left (x \right )+y_{2} \left (x \right ) = 0] \]

4177

\[ {} [y_{1}^{\prime }\left (x \right ) = y_{2} \left (x \right ), y_{2}^{\prime }\left (x \right ) = -y_{1} \left (x \right )+y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = -y_{2} \left (x \right )] \]

4178

\[ {} y^{\prime \prime }+\frac {y}{x^{2}} = 0 \]

4179

\[ {} y^{\prime \prime }-\frac {\left (-3 x^{2}+x \right ) y^{\prime }}{2 x^{3}+2 x^{2}}+\frac {y}{2 x^{3}+2 x^{2}} = 0 \]

4180

\[ {} y^{\prime \prime }+\left (1-\frac {1}{x}\right ) y^{\prime }-\frac {y}{x} = 0 \]

4181

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

4182

\[ {} y^{\prime \prime }-2 y^{\prime }+\left (\frac {1}{4 x^{2}}-1\right ) y = 0 \]

4183

\[ {} y^{\prime \prime }-\frac {\left (x^{2}+4 x +2\right ) \left (\left (1-x \right ) y^{\prime }+y\right )}{x \left (-x^{2}+2\right )} = 0 \]

4184

\[ {} y^{\prime \prime }-\frac {3 y^{\prime }}{x \left (1-x \right )}+\frac {2 y}{x \left (1-x \right )} = 0 \]

4185

\[ {} y^{\prime \prime }+\frac {\left (1-x \right ) y^{\prime }}{2 x}-\frac {y}{4 x} = 0 \]

4186

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{2 x}+\frac {y}{4 x} = 0 \]

4187

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1+\frac {1}{x^{2}}\right ) y = 0 \]

4188

\[ {} y^{\prime \prime }+\frac {\left (1-5 x \right ) y^{\prime }}{-x^{2}+x}-\frac {4 y}{-x^{2}+x} = 0 \]

4189

\[ {} y^{\prime \prime }+\frac {\left (x -1\right ) y^{\prime }}{x \left (1+x \right )}-\frac {y}{x \left (1+x \right )} = 0 \]

4190

\[ {} y y^{\prime } = x \]

4191

\[ {} y^{\prime }-y = x^{3} \]

4192

\[ {} y^{\prime }+\cot \left (x \right ) y = x \]

4193

\[ {} y^{\prime }+\cot \left (x \right ) y = \tan \left (x \right ) \]

4194

\[ {} y^{\prime }+y \tan \left (x \right ) = \cot \left (x \right ) \]

4195

\[ {} y^{\prime }+y \ln \left (x \right ) = x^{-x} \]

4196

\[ {} x y^{\prime }+y = x \]

4197

\[ {} x y^{\prime }-y = x^{3} \]

4198

\[ {} x y^{\prime }+n y = x^{n} \]

4199

\[ {} x y^{\prime }-n y = x^{n} \]

4200

\[ {} \left (x^{3}+x \right ) y^{\prime }+y = x \]