|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} \cot \left (x \right ) y^{\prime }+y = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \cot \left (x \right ) y^{\prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \tan \left (x \right ) y^{\prime }+y = \cot \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \tan \left (x \right ) y^{\prime } = y-\cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\cos \left (x \right ) y = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } \cos \left (x \right )+y = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y \sin \left (x \right ) = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \sin \left (x \right ) y^{\prime }+y = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \sqrt {x^{2}+1}\, y^{\prime }+y = 2 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sqrt {x^{2}+1}\, y^{\prime }-y = 2 \sqrt {x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sqrt {\left (x +a \right ) \left (x +b \right )}\, \left (2 y^{\prime }-3\right )+y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \sqrt {\left (x +a \right ) \left (x +b \right )}\, y^{\prime }+y = \sqrt {x +a}-\sqrt {x +b}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 3 y^{2} y^{\prime } = 2 x -1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 6 x y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = {\mathrm e}^{y} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = {\mathrm e}^{x -y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x \sec \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = 3 \cos \left (y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1-x \right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {4 x y}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {2 y}{x^{2}-1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime }-y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \cot \left (x \right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = x \,{\mathrm e}^{-2 y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }-2 x y = 2 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = x y+y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{3}+1\right ) y^{\prime } = 3 x^{2} \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \cos \left (y\right ) y^{\prime } = 1+\sin \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = 2 y \left (-1+y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime } = 1-y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1-x \right ) y^{\prime } = x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {\mathrm e}^{y} y^{\prime }+2 x = 2 x \,{\mathrm e}^{y}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y \,{\mathrm e}^{2 x} y^{\prime }+2 x = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y y^{\prime } = \sqrt {y^{2}-9}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x +y-1\right ) y^{\prime } = x -y+1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y y^{\prime } = 2 x^{2}-y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2}-y^{2}+x y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime }-2 x y-2 y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = y+2 \,{\mathrm e}^{-\frac {y}{x}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \left (x +y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \sin \left (x -y+1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {x +y+4}{x -y-6}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime } = \frac {x +y+4}{x +y-6}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x +\frac {2}{y}\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
|
\[
{} y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} -\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 1+y+\left (1-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{3}+\cos \left (x \right ) y+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} 1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x +3 x^{3} y^{4}\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x -1-y^{2}\right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y-\left (x +x y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = x^{5}+x^{3} y^{2}+y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x +y\right ) y^{\prime } = y-x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = y+x^{2}+9 y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }-3 y = x^{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = \frac {1}{{\mathrm e}^{2 x}+1}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime }+2 x y = \cot \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+y = 2 x \,{\mathrm e}^{-x}+x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+\cot \left (x \right ) y = 2 x \csc \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 y-x^{3} = x y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (1-x y\right ) y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x +3 y+1+\left (2 y-3 x +5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime } = \sqrt {x^{2}+y^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{2} = \left (x^{3}-x y\right ) y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{3}+y = \left (x^{3} y^{2}-x \right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = x \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x y-x^{2}\right ) y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left ({\mathrm e}^{x}-3 x^{2} y^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x} = 2 x y^{3}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y+x^{2} = x y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime }+y = x^{2} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 6 x +4 y+3+\left (3 x +2 y+2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \cos \left (x +y\right )-x \sin \left (x +y\right ) = x \sin \left (x +y\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2} {\mathrm e}^{x y}+\cos \left (x \right )+\left ({\mathrm e}^{x y}+x y \,{\mathrm e}^{x y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } \ln \left (x -y\right ) = 1+\ln \left (x -y\right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime }+2 x y = {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{2}-3 x y-2 x^{2} = \left (x^{2}-x y\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime }+2 x y = 4 x^{3}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} {\mathrm e}^{x} \sin \left (y\right )-y \sin \left (x y\right )+\left ({\mathrm e}^{x} \cos \left (y\right )-x \sin \left (x y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x \,{\mathrm e}^{y}+y-x^{2}\right ) y^{\prime } = 2 x y-{\mathrm e}^{y}-x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (1+x \right ) {\mathrm e}^{x} = \left (x \,{\mathrm e}^{x}-y \,{\mathrm e}^{y}\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y+x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x +y+\left (x -y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \ln \left (x \right ) y^{\prime }+\frac {x +y}{x} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \cos \left (y\right )-x \sin \left (y\right ) y^{\prime } = \sec \left (x \right )^{2}
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} y \sin \left (\frac {x}{y}\right )+x \cos \left (\frac {x}{y}\right )-1+\left (x \sin \left (\frac {x}{y}\right )-\frac {x^{2} \cos \left (\frac {x}{y}\right )}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \frac {x}{x^{2}+y^{2}}+\frac {y}{x^{2}}+\left (\frac {y}{x^{2}+y^{2}}-\frac {1}{x}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|