6.46 Problems 4501 to 4600

Table 6.91: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

4501

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

4502

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

4503

\[ {}y^{\prime \prime }-y = \frac {1}{\sqrt {1-{\mathrm e}^{2 x}}} \]

4504

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-2 x} \sin \left ({\mathrm e}^{-x}\right ) \]

4505

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 15 \,{\mathrm e}^{-x} \sqrt {1+x} \]

4506

\[ {}y^{\prime \prime }+4 y = 2 \tan \left (x \right ) \]

4507

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{2 x}}{\left (1+{\mathrm e}^{x}\right )^{2}} \]

4508

\[ {}y^{\prime \prime }+y^{\prime } = \frac {1}{1+{\mathrm e}^{x}} \]

4509

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right ) \]

4510

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = \frac {5 \ln \left (x \right )}{x^{2}} \]

4511

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 \ln \left (x \right ) x^{2} \]

4512

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

4513

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} \]

4514

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 60 \cos \left (3 t \right ) \]

4515

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 9 \,{\mathrm e}^{-2 t} \]

4516

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 2 t^{2}+1 \]

4517

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 t \right ) \]

4518

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 4 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{t} \]

4519

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 8 \,{\mathrm e}^{-t} \sin \left (t \right ) \]

4520

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 8 \,{\mathrm e}^{t} \sin \left (2 t \right ) \]

4521

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 54 t \,{\mathrm e}^{-2 t} \]

4522

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 9 \,{\mathrm e}^{2 t} \operatorname {Heaviside}\left (t -1\right ) \]

4523

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \sin \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]

4524

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 t \right ) \operatorname {Heaviside}\left (t -\pi \right ) \]

4525

\[ {}y^{\prime \prime }+4 y = 8 \left (t^{2}+t -1\right ) \operatorname {Heaviside}\left (t -2\right ) \]

4526

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{t} \operatorname {Heaviside}\left (t -2\right ) \]

4527

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = \delta \left (t -2\right ) \]

4528

\[ {}y^{\prime \prime }+4 y = 4 \operatorname {Heaviside}\left (t -\pi \right )+2 \delta \left (t -\pi \right ) \]

4529

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+4 y^{\prime }-4 y = 10 \,{\mathrm e}^{-t} \]

4530

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 120 \,{\mathrm e}^{3 t} \operatorname {Heaviside}\left (t -1\right ) \]

4531

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-4 y = 40 t^{2} \operatorname {Heaviside}\left (t -2\right ) \]

4532

\[ {}y^{\prime \prime \prime \prime }+4 y = \left (2 t^{2}+t +1\right ) \delta \left (t -1\right ) \]

4533

\[ {}[x^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = 0, x \left (t \right )+y^{\prime }\left (t \right )-2 y \left (t \right ) = 0] \]

4534

\[ {}[2 x^{\prime }\left (t \right )+x \left (t \right )-5 y^{\prime }\left (t \right )-4 y \left (t \right ) = 0, -y^{\prime }\left (t \right )-2 x \left (t \right )+y \left (t \right ) = 0] \]

4535

\[ {}[x^{\prime }\left (t \right )-x \left (t \right )+3 y \left (t \right ) = 0, 3 x \left (t \right )-y^{\prime }\left (t \right )+y \left (t \right ) = 0] \]

4536

\[ {}[x^{\prime \prime }\left (t \right )+x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-2 y \left (t \right ) = 0, x^{\prime }\left (t \right )+x \left (t \right )-y^{\prime }\left (t \right ) = 0] \]

4537

\[ {}[x^{\prime \prime }\left (t \right )-3 x \left (t \right )-4 y \left (t \right ) = 0, x \left (t \right )+y^{\prime \prime }\left (t \right )+y \left (t \right ) = 0] \]

4538

\[ {}[y_{1}^{\prime }\left (x \right )-y_{2} \left (x \right ) = 0, 4 y_{1} \left (x \right )+y_{2}^{\prime }\left (x \right )-4 y_{2} \left (x \right )-2 y_{3} \left (x \right ) = 0, -2 y_{1} \left (x \right )+y_{2} \left (x \right )+y_{3}^{\prime }\left (x \right )+y_{3} \left (x \right ) = 0] \]

4539

\[ {}[y_{1}^{\prime }\left (x \right )-2 y_{1} \left (x \right )+3 y_{2} \left (x \right )-3 y_{3} \left (x \right ) = 0, -4 y_{1} \left (x \right )+y_{2}^{\prime }\left (x \right )+5 y_{2} \left (x \right )-3 y_{3} \left (x \right ) = 0, -4 y_{1} \left (x \right )+4 y_{2} \left (x \right )+y_{3}^{\prime }\left (x \right )-2 y_{3} \left (x \right ) = 0] \]

4540

\[ {}[x^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right ) = 8, 2 x \left (t \right )+y^{\prime }\left (t \right )-2 y \left (t \right ) = 2 \,{\mathrm e}^{-t}-8] \]

4541

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )+t \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = 2 x \left (t \right )-3 y \left (t \right )+{\mathrm e}^{-t}] \]

4542

\[ {}[x^{\prime }\left (t \right )-x \left (t \right )-2 y \left (t \right ) = {\mathrm e}^{t}, -4 x \left (t \right )+y^{\prime }\left (t \right )-3 y \left (t \right ) = 1] \]

4543

\[ {}[x^{\prime }\left (t \right )-4 x \left (t \right )+3 y \left (t \right ) = \sin \left (t \right ), -2 x \left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = -2 \cos \left (t \right )] \]

4544

\[ {}[x^{\prime }\left (t \right )-y \left (t \right ) = 0, -x \left (t \right )+y^{\prime }\left (t \right ) = {\mathrm e}^{t}+{\mathrm e}^{-t}] \]

4545

\[ {}[x^{\prime }\left (t \right )+2 x \left (t \right )+5 y \left (t \right ) = 0, -x \left (t \right )+y^{\prime }\left (t \right )-2 y \left (t \right ) = \sin \left (2 t \right )] \]

4546

\[ {}[x^{\prime }\left (t \right )-2 x \left (t \right )+2 y^{\prime }\left (t \right ) = -4 \,{\mathrm e}^{2 t}, 2 x^{\prime }\left (t \right )-3 x \left (t \right )+3 y^{\prime }\left (t \right )-y \left (t \right ) = 0] \]

4547

\[ {}[3 x^{\prime }\left (t \right )+2 x \left (t \right )+y^{\prime }\left (t \right )-6 y \left (t \right ) = 5 \,{\mathrm e}^{t}, 4 x^{\prime }\left (t \right )+2 x \left (t \right )+y^{\prime }\left (t \right )-8 y \left (t \right ) = 5 \,{\mathrm e}^{t}+2 t -3] \]

4548

\[ {}[x^{\prime }\left (t \right )-5 x \left (t \right )+3 y \left (t \right ) = 2 \,{\mathrm e}^{3 t}, -x \left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = 5 \,{\mathrm e}^{-t}] \]

4549

\[ {}[x^{\prime }\left (t \right )-2 x \left (t \right )+y \left (t \right ) = 0, x \left (t \right )+y^{\prime }\left (t \right )-2 y \left (t \right ) = -5 \,{\mathrm e}^{t} \sin \left (t \right )] \]

4550

\[ {}\left [x^{\prime }\left (t \right )+4 x \left (t \right )+2 y \left (t \right ) = \frac {2}{{\mathrm e}^{t}-1}, 6 x \left (t \right )-y^{\prime }\left (t \right )+3 y \left (t \right ) = \frac {3}{{\mathrm e}^{t}-1}\right ] \]

4551

\[ {}[x^{\prime }\left (t \right )-x \left (t \right )+y \left (t \right ) = \sec \left (t \right ), -2 x \left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = 0] \]

4552

\[ {}[x^{\prime }\left (t \right )-x \left (t \right )-2 y \left (t \right ) = 16 t \,{\mathrm e}^{t}, 2 x \left (t \right )-y^{\prime }\left (t \right )-2 y \left (t \right ) = 0] \]

4553

\[ {}[x^{\prime }\left (t \right )-2 x \left (t \right )+y \left (t \right ) = 5 \,{\mathrm e}^{t} \cos \left (t \right ), x \left (t \right )+y^{\prime }\left (t \right )-2 y \left (t \right ) = 10 \,{\mathrm e}^{t} \sin \left (t \right )] \]

4554

\[ {}[x^{\prime }\left (t \right )-4 x \left (t \right )+3 y \left (t \right ) = \sin \left (t \right ), 2 x \left (t \right )+y^{\prime }\left (t \right )-y \left (t \right ) = 2 \cos \left (t \right )] \]

4555

\[ {}[x^{\prime }\left (t \right )-2 x \left (t \right )-y \left (t \right ) = 2 \,{\mathrm e}^{t}, x \left (t \right )-y^{\prime }\left (t \right )+2 y \left (t \right ) = 3 \,{\mathrm e}^{4 t}] \]

4556

\[ {}[x^{\prime \prime }\left (t \right )+x^{\prime }\left (t \right )+y^{\prime }\left (t \right )-2 y \left (t \right ) = 40 \,{\mathrm e}^{3 t}, x^{\prime }\left (t \right )+x \left (t \right )-y^{\prime }\left (t \right ) = 36 \,{\mathrm e}^{t}] \]

4557

\[ {}[x^{\prime }\left (t \right )-2 x \left (t \right )-y \left (t \right ) = 2 \,{\mathrm e}^{t}, y^{\prime }\left (t \right )-2 y \left (t \right )-4 z \left (t \right ) = 4 \,{\mathrm e}^{2 t}, x \left (t \right )-z^{\prime }\left (t \right )-z \left (t \right ) = 0] \]

4558

\[ {}[x^{\prime \prime }\left (t \right )+2 x \left (t \right )-2 y^{\prime }\left (t \right ) = 0, 3 x^{\prime }\left (t \right )+y^{\prime \prime }\left (t \right )-8 y \left (t \right ) = 240 \,{\mathrm e}^{t}] \]

4559

\[ {}[x^{\prime }\left (t \right )-x \left (t \right )-2 y \left (t \right ) = 0, x \left (t \right )-y^{\prime }\left (t \right ) = 15 \cos \left (t \right ) \operatorname {Heaviside}\left (t -\pi \right )] \]

4560

\[ {}[x^{\prime }\left (t \right )-x \left (t \right )+y \left (t \right ) = 2 \sin \left (t \right ) \left (1-\operatorname {Heaviside}\left (t -\pi \right )\right ), 2 x \left (t \right )-y^{\prime }\left (t \right )-y \left (t \right ) = 0] \]

4561

\[ {}[2 x^{\prime }\left (t \right )+x \left (t \right )-5 y^{\prime }\left (t \right )-4 y \left (t \right ) = 28 \,{\mathrm e}^{t} \operatorname {Heaviside}\left (t -2\right ), 3 x^{\prime }\left (t \right )-2 x \left (t \right )-4 y^{\prime }\left (t \right )+y \left (t \right ) = 0] \]

4562

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )+x_{2} \left (t \right )] \]

4563

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+x_{2} \left (t \right )] \]

4564

\[ {}[x_{1}^{\prime }\left (t \right ) = 5 x_{1} \left (t \right )+3 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )-x_{2} \left (t \right )] \]

4565

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+2 x_{3} \left (t \right )] \]

4566

\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right )+4 x_{3} \left (t \right )] \]

4567

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+3 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+2 x_{2} \left (t \right )+3 x_{3} \left (t \right )] \]

4568

\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-4 x_{2} \left (t \right )-3 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-4 x_{2} \left (t \right )] \]

4569

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{2} \left (t \right )+2 x_{3} \left (t \right )] \]

4570

\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+x_{2} \left (t \right )-2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )+x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )] \]

4571

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )+26 \sin \left (t \right ), x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+4 x_{2} \left (t \right )] \]

4572

\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+8 x_{2} \left (t \right )+9 t, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+3 \,{\mathrm e}^{-t}] \]

4573

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+4 x_{2} \left (t \right )+\frac {{\mathrm e}^{3 t}}{{\mathrm e}^{2 t}+1}\right ] \]

4574

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -4 x_{1} \left (t \right )-2 x_{2} \left (t \right )+\frac {2}{{\mathrm e}^{t}-1}, x_{2}^{\prime }\left (t \right ) = 6 x_{1} \left (t \right )+3 x_{2} \left (t \right )-\frac {3}{{\mathrm e}^{t}-1}\right ] \]

4575

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+{\mathrm e}^{2 t}, x_{2}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+3 x_{2} \left (t \right )] \]

4576

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )-5 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+\frac {4}{\sin \left (2 t \right )}\right ] \]

4577

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )+x_{2} \left (t \right )+27 t, x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+4 x_{2} \left (t \right )] \]

4578

\[ {}[x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-x_{2} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right )] \]

4579

\[ {}\left [x_{1}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )+35 \,{\mathrm e}^{t} t^{{3}/{2}}\right ] \]

4580

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )+x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )+6 \,{\mathrm e}^{-t}, x_{3}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )] \]

4581

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-2 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+x_{2} \left (t \right )+x_{3} \left (t \right )+12 t, x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{3} \left (t \right )] \]

4582

\[ {}[x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right )+4 x_{2} \left (t \right )-2 x_{3} \left (t \right )+{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 6 x_{1} \left (t \right )-6 x_{2} \left (t \right )+5 x_{3} \left (t \right )] \]

4583

\[ {}[x_{1}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right )-x_{3} \left (t \right )+4 \,{\mathrm e}^{t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )+x_{3} \left (t \right )] \]

4584

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )+2 x_{3} \left (t \right ), x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -2 x_{1} \left (t \right )+x_{2} \left (t \right )-x_{3} \left (t \right )+4 \sin \left (t \right )] \]

4585

\[ {}[x_{1}^{\prime }\left (t \right ) = 4 x_{1} \left (t \right )-x_{2} \left (t \right )-x_{3} \left (t \right )+{\mathrm e}^{3 t}, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )+2 x_{2} \left (t \right )-x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = x_{1} \left (t \right )+x_{2} \left (t \right )+2 x_{3} \left (t \right )] \]

4586

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{2} \left (t \right )-x_{3} \left (t \right )+2 \,{\mathrm e}^{2 t}, x_{2}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-2 x_{2} \left (t \right )-3 x_{3} \left (t \right ), x_{3}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+x_{2} \left (t \right )+2 x_{3} \left (t \right )] \]

4587

\[ {}[x_{1}^{\prime }\left (t \right ) = 2 x_{1} \left (t \right )-x_{3} \left (t \right )+24 t, x_{2}^{\prime }\left (t \right ) = x_{1} \left (t \right )-x_{2} \left (t \right ), x_{3}^{\prime }\left (t \right ) = 3 x_{1} \left (t \right )-x_{2} \left (t \right )-x_{3} \left (t \right )] \]

4588

\[ {}y^{\prime \prime }-x y = 0 \]

4589

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

4590

\[ {}y^{\prime \prime }+x y = 0 \]

4591

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

4592

\[ {}y^{\prime \prime }-2 x^{2} y = 0 \]

4593

\[ {}y^{\prime \prime }-2 x^{2} y^{\prime }+x y = 0 \]

4594

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+\left (4 x -1\right ) y^{\prime }+2 y = 0 \]

4595

\[ {}y^{\prime \prime }+\left (1+\cos \left (x \right )\right ) y = 0 \]

4596

\[ {}y^{\prime \prime }+\sin \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

4597

\[ {}x y^{\prime \prime }+y^{\prime }-x y = 0 \]

4598

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0 \]

4599

\[ {}x^{2} y^{\prime \prime }+\left (-2 x^{2}+x \right ) y^{\prime }-x y = 0 \]

4600

\[ {}x^{2} y^{\prime \prime }-\left (x^{2}+2 x \right ) y^{\prime }+2 y = 0 \]