5.2.55 Problems 5401 to 5500

Table 5.277: Second order linear ODE

#

ODE

Mathematica

Maple

18338

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

18339

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

18340

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

18341

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

18342

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

18343

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

18344

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

18345

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

18346

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

18347

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

18348

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

18349

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

18350

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

18351

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

18352

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]

18353

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (1+x \right )^{2} \]

18354

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

18355

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

18356

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

18380

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \]

18381

\[ {}y^{\prime \prime }-y = x^{2} {\mathrm e}^{2 x} \]

18382

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 10 x^{3} {\mathrm e}^{-2 x} \]

18383

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

18384

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \]

18385

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \,{\mathrm e}^{5 x} \]

18386

\[ {}y^{\prime \prime }-y^{\prime }+y = x^{3}-3 x^{2}+1 \]

18388

\[ {}4 y^{\prime \prime }+y = x^{4} \]

18391

\[ {}y^{\prime \prime }+y^{\prime }-y = -x^{4}+3 x \]

18392

\[ {}y^{\prime \prime }+y = x^{4} \]

18395

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} {\mathrm e}^{2 x} \]

18396

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = {\mathrm e}^{2 x} \left (x^{3}-5 x^{2}\right ) \]

18397

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \]

18406

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \sin \left (x \right ) {\mathrm e}^{2 x} \]

18414

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

18453

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

18454

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \]

18455

\[ {}y^{\prime \prime }+y^{\prime } = 3 x^{2} \]

18456

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (x \right ) {\mathrm e}^{-x} \]

18457

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

18458

\[ {}x y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-\left (4 x +9\right ) y = 0 \]

18459

\[ {}x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y = 3 \,{\mathrm e}^{-x} \]

18460

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

18461

\[ {}y^{\prime \prime }+a^{2} y = f \left (x \right ) \]

18462

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 t} \]

18463

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]

18464

\[ {}y^{\prime \prime }-y^{\prime } = t^{2} \]

18465

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = f \left (t \right ) \]

18513

\[ {}t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0 \]

18516

\[ {}t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x = 0 \]

18517

\[ {}x^{\prime \prime }-5 x^{\prime }+6 x = 0 \]

18518

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

18519

\[ {}x^{\prime \prime }-4 x^{\prime }+5 x = 0 \]

18520

\[ {}x^{\prime \prime }+3 x^{\prime } = 0 \]

18521

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]

18522

\[ {}x^{\prime \prime }+x = 0 \]

18523

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

18524

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]

18525

\[ {}x^{\prime \prime }-x = t^{2} \]

18526

\[ {}x^{\prime \prime }-x = {\mathrm e}^{t} \]

18527

\[ {}x^{\prime \prime }+2 x^{\prime }+4 x = {\mathrm e}^{t} \cos \left (2 t \right ) \]

18528

\[ {}x^{\prime \prime }-x^{\prime }+x = \sin \left (2 t \right ) \]

18529

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = t \sin \left (t \right ) \]

18530

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]

18533

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y = 0 \]

18534

\[ {}\cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y^{\prime \prime }+n y \sin \left (x \right ) = 0 \]

18565

\[ {}\theta ^{\prime \prime } = -p^{2} \theta \]

18580

\[ {}\theta ^{\prime \prime }-p^{2} \theta = 0 \]

18581

\[ {}y^{\prime \prime }+y = 0 \]

18582

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

18583

\[ {}r^{\prime \prime }-a^{2} r = 0 \]

18585

\[ {}v^{\prime \prime }-6 v^{\prime }+13 v = {\mathrm e}^{-2 u} \]

18586

\[ {}y^{\prime \prime }+4 y^{\prime }-y = \sin \left (t \right ) \]

18587

\[ {}y^{\prime \prime }+3 y = \sin \left (x \right )+\frac {\sin \left (3 x \right )}{3} \]

18595

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

18599

\[ {}y^{\prime \prime } = -m^{2} y \]

18602

\[ {}x y^{\prime \prime }+2 y^{\prime } = x y \]

18606

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x} \]

18607

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

18608

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

18615

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18616

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 0 \]

18618

\[ {}v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0 \]

18655

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

18656

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

18664

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = 2 \,{\mathrm e}^{2 x} \]

18666

\[ {}y^{\prime \prime }-4 y^{\prime }+2 y = x \]

18667

\[ {}y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

18670

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

18671

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \]

18672

\[ {}y^{\prime \prime }+y = \cos \left (x \right ) \]

18674

\[ {}y^{\prime \prime }+y = \sin \left (x \right ) \]

18678

\[ {}e y^{\prime \prime } = \frac {P \left (\frac {L}{2}-x \right )}{2} \]

18679

\[ {}e y^{\prime \prime } = \frac {w \left (\frac {L^{2}}{4}-x^{2}\right )}{2} \]

18680

\[ {}e y^{\prime \prime } = -\frac {\left (w L +P \right ) x}{2}-\frac {w \,x^{2}}{2} \]

18681

\[ {}e y^{\prime \prime } = -P \left (L -x \right ) \]

18682

\[ {}e y^{\prime \prime } = -P L +\left (w L +P \right ) x -\frac {w \left (L^{2}+x^{2}\right )}{2} \]

18683

\[ {}e y^{\prime \prime } = P \left (-y+a \right ) \]

18685

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = x \]

18689

\[ {}x y^{\prime \prime }+2 y^{\prime } = 2 x \]

18690

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right ) \]