5.2.56 Problems 5501 to 5600

Table 5.279: Second order linear ODE

#

ODE

Mathematica

Maple

18691

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x \]

18692

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = x \]

18693

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+\csc \left (x \right )^{2} y = \cos \left (x \right ) \]

18694

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0 \]

18695

\[ {}\left (3 x^{2}+x \right ) y^{\prime \prime }+2 \left (6 x +1\right ) y^{\prime }+6 y = \sin \left (x \right ) \]

18698

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

18699

\[ {}x^{2} y^{\prime \prime } = \ln \left (x \right ) \]

18700

\[ {}y^{\prime \prime } = -a^{2} y \]

18705

\[ {}x y^{\prime \prime }+3 y^{\prime } = 3 x \]

18706

\[ {}x = y^{\prime \prime }+y^{\prime } \]

18709

\[ {}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0 \]

18710

\[ {}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0 \]

18724

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

18725

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

18726

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

18867

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

18868

\[ {}y^{\prime \prime }-m^{2} y = 0 \]

18869

\[ {}2 y^{\prime \prime }+5 y^{\prime }-12 y = 0 \]

18870

\[ {}9 y^{\prime \prime }+18 y^{\prime }-16 y = 0 \]

18873

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

18876

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

18877

\[ {}y^{\prime \prime }-y = 2+5 x \]

18878

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x} \]

18882

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{\frac {5 x}{2}} \]

18886

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

18887

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

18890

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) {\mathrm e}^{2 x} \]

18891

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right ) \]

18892

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

18893

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

18897

\[ {}y^{\prime \prime }+4 y = \sin \left (3 x \right )+{\mathrm e}^{x}+x^{2} \]

18898

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x +{\mathrm e}^{m x} \]

18899

\[ {}y^{\prime \prime }-a^{2} y = {\mathrm e}^{a x}+{\mathrm e}^{n x} \]

18905

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

18906

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

18907

\[ {}y^{\prime \prime }+n^{2} y = {\mathrm e}^{x} x^{4} \]

18911

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (2 x \right ) \]

18913

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

18917

\[ {}y^{\prime \prime }-y = x \sin \left (x \right )+\left (x^{2}+1\right ) {\mathrm e}^{x} \]

18918

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = {\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right ) \]

18920

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 20 x \]

18923

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right ) \]

18924

\[ {}x^{2} y^{\prime \prime }+y = 3 x^{2} \]

18927

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4} \]

18928

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4} \]

18929

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (1+x \right )^{2} \]

18930

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5} \]

18931

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5-2 x \right ) y^{\prime }+8 y = 0 \]

18932

\[ {}\left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

18934

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x} \]

18936

\[ {}\left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x \]

18940

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

18941

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m} \]

18944

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

18945

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right ) \]

18946

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x} \]

18948

\[ {}x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

18949

\[ {}x y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

18950

\[ {}y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2} \]

18951

\[ {}\sqrt {x}\, y^{\prime \prime }+2 x y^{\prime }+3 y = x \]

18956

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

18957

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

18974

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

18983

\[ {}y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )} \]

18990

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2 \]

18991

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \]

18993

\[ {}y^{\prime \prime } = \frac {a}{x} \]

18996

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

18998

\[ {}\sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

18999

\[ {}a y^{\prime \prime } = y^{\prime } \]

19003

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = {\mathrm e}^{x} \]

19004

\[ {}y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

19005

\[ {}\left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

19006

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

19007

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

19009

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

19010

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

19011

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = 0 \]

19012

\[ {}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

19013

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

19014

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y = 0 \]

19015

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5} \]

19016

\[ {}x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}} \]

19017

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

19018

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

19019

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

19020

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19021

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+3 \left (x -2\right ) y = 0 \]

19022

\[ {}y^{\prime \prime }-2 b y^{\prime }+b^{2} x^{2} y = 0 \]

19023

\[ {}y^{\prime \prime }+4 x y^{\prime }+4 x^{2} y = 0 \]

19024

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

19025

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = x \left (-x^{2}+1\right )^{{3}/{2}} \]

19026

\[ {}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

19028

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

19029

\[ {}y^{\prime \prime }+x y^{\prime }-y = f \left (x \right ) \]

19030

\[ {}x^{2} y^{\prime \prime }-2 x \left (1+x \right ) y^{\prime }+2 \left (1+x \right ) y = x^{3} \]

19031

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

19032

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

19035

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

19045

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = \frac {1}{x} \]