5.3.61 Problems 6001 to 6100

Table 5.405: Second order ode

#

ODE

Mathematica

Maple

18315

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

18316

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

18317

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

18318

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

18319

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

18320

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

18321

\[ {}x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0 \]

18322

\[ {}y^{\prime \prime }+3 x y^{\prime }+x^{2} y = 0 \]

18323

\[ {}y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

18324

\[ {}y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

18325

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

18326

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

18327

\[ {}y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

18328

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

18329

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

18330

\[ {}y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

18331

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

18332

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

18333

\[ {}y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

18334

\[ {}y^{\prime \prime }+k^{2} y = \sin \left (b x \right ) \]

18335

\[ {}y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

18336

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

18337

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \]

18338

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

18339

\[ {}y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

18340

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

18341

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

18342

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

18343

\[ {}2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

18344

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

18345

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

18346

\[ {}y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

18347

\[ {}y^{\prime \prime }+y = \cot \left (2 x \right ) \]

18348

\[ {}y^{\prime \prime }+y = x \cos \left (x \right ) \]

18349

\[ {}y^{\prime \prime }+y = \tan \left (x \right ) \]

18350

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

18351

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

18352

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = \left (x^{2}-1\right )^{2} \]

18353

\[ {}\left (x^{2}+x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-\left (x +2\right ) y = x \left (1+x \right )^{2} \]

18354

\[ {}\left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

18355

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = x^{2} {\mathrm e}^{2 x} \]

18356

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \,{\mathrm e}^{-x} \]

18380

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \]

18381

\[ {}y^{\prime \prime }-y = x^{2} {\mathrm e}^{2 x} \]

18382

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 10 x^{3} {\mathrm e}^{-2 x} \]

18383

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

18384

\[ {}y^{\prime \prime }-y = {\mathrm e}^{-x} \]

18385

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 6 \,{\mathrm e}^{5 x} \]

18386

\[ {}y^{\prime \prime }-y^{\prime }+y = x^{3}-3 x^{2}+1 \]

18388

\[ {}4 y^{\prime \prime }+y = x^{4} \]

18391

\[ {}y^{\prime \prime }+y^{\prime }-y = -x^{4}+3 x \]

18392

\[ {}y^{\prime \prime }+y = x^{4} \]

18395

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{3} {\mathrm e}^{2 x} \]

18396

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = {\mathrm e}^{2 x} \left (x^{3}-5 x^{2}\right ) \]

18397

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 2 x^{2} {\mathrm e}^{-2 x}+3 \,{\mathrm e}^{2 x} \]

18406

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = \sin \left (x \right ) {\mathrm e}^{2 x} \]

18414

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

18453

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

18454

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \]

18455

\[ {}y^{\prime \prime }+y^{\prime } = 3 x^{2} \]

18456

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (x \right ) {\mathrm e}^{-x} \]

18457

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

18458

\[ {}x y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-\left (4 x +9\right ) y = 0 \]

18459

\[ {}x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y = 3 \,{\mathrm e}^{-x} \]

18460

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

18461

\[ {}y^{\prime \prime }+a^{2} y = f \left (x \right ) \]

18462

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4 \,{\mathrm e}^{3 t} \]

18463

\[ {}y^{\prime \prime }+y^{\prime }-6 y = t \]

18464

\[ {}y^{\prime \prime }-y^{\prime } = t^{2} \]

18465

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = f \left (t \right ) \]

18487

\[ {}x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5} = 0 \]

18513

\[ {}t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0 \]

18516

\[ {}t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x = 0 \]

18517

\[ {}x^{\prime \prime }-5 x^{\prime }+6 x = 0 \]

18518

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

18519

\[ {}x^{\prime \prime }-4 x^{\prime }+5 x = 0 \]

18520

\[ {}x^{\prime \prime }+3 x^{\prime } = 0 \]

18521

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]

18522

\[ {}x^{\prime \prime }+x = 0 \]

18523

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

18524

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]

18525

\[ {}x^{\prime \prime }-x = t^{2} \]

18526

\[ {}x^{\prime \prime }-x = {\mathrm e}^{t} \]

18527

\[ {}x^{\prime \prime }+2 x^{\prime }+4 x = {\mathrm e}^{t} \cos \left (2 t \right ) \]

18528

\[ {}x^{\prime \prime }-x^{\prime }+x = \sin \left (2 t \right ) \]

18529

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = t \sin \left (t \right ) \]

18530

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]

18531

\[ {}x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 x y^{\prime }+4 y = 0 \]

18533

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y = 0 \]

18534

\[ {}\cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y^{\prime \prime }+n y \sin \left (x \right ) = 0 \]

18536

\[ {}v^{\prime \prime } = \left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}} \]

18538

\[ {}\sqrt {y^{\prime }+y} = \left (y^{\prime \prime }+2 x \right )^{{1}/{4}} \]

18565

\[ {}\theta ^{\prime \prime } = -p^{2} \theta \]

18567

\[ {}y^{\prime \prime } = \frac {m \sqrt {1+{y^{\prime }}^{2}}}{k} \]

18568

\[ {}\phi ^{\prime \prime } = \frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}} \]

18580

\[ {}\theta ^{\prime \prime }-p^{2} \theta = 0 \]

18581

\[ {}y^{\prime \prime }+y = 0 \]

18582

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

18583

\[ {}r^{\prime \prime }-a^{2} r = 0 \]

18585

\[ {}v^{\prime \prime }-6 v^{\prime }+13 v = {\mathrm e}^{-2 u} \]