5.9.67 Problems 6601 to 6700

Table 5.761: First order ode linear in derivative

#

ODE

Mathematica

Maple

17398

\[ {}2 x y^{2}+2 y+\left (2 x^{2} y+2 x \right ) y^{\prime } = 0 \]

17399

\[ {}y^{\prime } = -\frac {2 y+4 x}{2 x +3 y} \]

17400

\[ {}y^{\prime } = -\frac {4 x -2 y}{2 x -3 y} \]

17401

\[ {}{\mathrm e}^{x} \sin \left (y\right )-2 y \sin \left (x \right )+\left ({\mathrm e}^{x} \cos \left (y\right )+2 \cos \left (x \right )\right ) y^{\prime } = 0 \]

17402

\[ {}{\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

17403

\[ {}y \,{\mathrm e}^{x y} \cos \left (2 x \right )-2 \,{\mathrm e}^{x y} \sin \left (2 x \right )+2 x +\left (x \,{\mathrm e}^{x y} \cos \left (2 x \right )-3\right ) y^{\prime } = 0 \]

17404

\[ {}\frac {y}{x}+6 x +\left (\ln \left (x \right )-2\right ) y^{\prime } = 0 \]

17405

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

17406

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

17407

\[ {}2 x -y+\left (-x +2 y\right ) y^{\prime } = 0 \]

17408

\[ {}9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime } = 0 \]

17409

\[ {}x^{2} y^{3}+x \left (1+y^{2}\right ) y^{\prime } = 0 \]

17410

\[ {}\frac {\sin \left (y\right )}{y}-2 \sin \left (x \right ) {\mathrm e}^{-x}+\frac {\left (\cos \left (y\right )+2 \,{\mathrm e}^{-x} \cos \left (x \right )\right ) y^{\prime }}{y} = 0 \]

17411

\[ {}y+\left (2 x -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

17412

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

17413

\[ {}3 x^{2} y+2 x y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime } = 0 \]

17414

\[ {}y^{\prime } = {\mathrm e}^{2 x}+y-1 \]

17415

\[ {}\frac {y^{\prime }}{\frac {x}{y}-\sin \left (y\right )} = 0 \]

17416

\[ {}y+\left (2 x y-{\mathrm e}^{-2 y}\right ) y^{\prime } = 0 \]

17417

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

17418

\[ {}\frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

17419

\[ {}3 x +\frac {6}{y}+\left (\frac {x^{2}}{y}+\frac {3 y}{x}\right ) y^{\prime } = 0 \]

17420

\[ {}3 x y+y^{2}+\left (x y+x^{2}\right ) y^{\prime } = 0 \]

17421

\[ {}y y^{\prime } = 1+x \]

17422

\[ {}\left (y^{4}+1\right ) y^{\prime } = x^{4}+1 \]

17423

\[ {}\frac {\left (3 x^{3}-x y^{2}\right ) y^{\prime }}{3 x^{2} y+y^{3}} = 1 \]

17424

\[ {}x \left (x -1\right ) y^{\prime } = y \left (1+y\right ) \]

17425

\[ {}\sqrt {x^{2}-y^{2}}+y = x y^{\prime } \]

17426

\[ {}x y y^{\prime } = \left (x +y\right )^{2} \]

17427

\[ {}y^{\prime } = \frac {4 y-7 x}{5 x -y} \]

17428

\[ {}x y^{\prime }-4 \sqrt {y^{2}-x^{2}} = y \]

17429

\[ {}y^{\prime } = \frac {y^{4}+2 x y^{3}-3 x^{2} y^{2}-2 x^{3} y}{2 x^{2} y^{2}-2 x^{3} y-2 x^{4}} \]

17430

\[ {}\left (y+x \,{\mathrm e}^{\frac {x}{y}}\right ) y^{\prime } = y \,{\mathrm e}^{\frac {x}{y}} \]

17431

\[ {}x y y^{\prime } = x^{2}+y^{2} \]

17432

\[ {}y^{\prime } = \frac {x +y}{x -y} \]

17433

\[ {}t y^{\prime }+y = t^{2} y^{2} \]

17434

\[ {}y^{\prime } = y \left (t y^{3}-1\right ) \]

17435

\[ {}y^{\prime }+\frac {3 y}{t} = t^{2} y^{2} \]

17436

\[ {}t^{2} y^{\prime }+2 t y-y^{3} = 0 \]

17437

\[ {}5 \left (t^{2}+1\right ) y^{\prime } = 4 t y \left (y^{3}-1\right ) \]

17438

\[ {}3 t y^{\prime }+9 y = 2 t y^{{5}/{3}} \]

17439

\[ {}y^{\prime } = y+\sqrt {y} \]

17440

\[ {}y^{\prime } = r y-k^{2} y^{2} \]

17441

\[ {}y^{\prime } = a y+b y^{3} \]

17442

\[ {}y^{\prime }+3 t y = 4-4 t^{2}+y^{2} \]

17443

\[ {}\left (3 x-y \right ) x^{\prime }+9 y -2 x = 0 \]

17444

\[ {}1 = \left (3 \,{\mathrm e}^{y}-2 x \right ) y^{\prime } \]

17445

\[ {}y^{\prime }-4 \,{\mathrm e}^{x} y^{2} = y \]

17446

\[ {}x y^{\prime }+\left (1+x \right ) y = x \]

17447

\[ {}y^{\prime } = \frac {x y^{2}-\frac {\sin \left (2 x \right )}{2}}{\left (-x^{2}+1\right ) y} \]

17448

\[ {}\frac {\sqrt {x}\, y^{\prime }}{y} = 1 \]

17449

\[ {}5 x y^{2}+5 y+\left (5 x^{2} y+5 x \right ) y^{\prime } = 0 \]

17450

\[ {}2 x y y^{\prime }+\ln \left (x \right ) = -y^{2}-1 \]

17451

\[ {}\left (2-x \right ) y^{\prime } = y+2 \left (2-x \right )^{5} \]

17452

\[ {}x y^{\prime } = -\frac {1}{\ln \left (x \right )} \]

17453

\[ {}x^{\prime } = \frac {2 x y +x^{2}}{3 y^{2}+2 x y} \]

17454

\[ {}4 x y y^{\prime } = 8 x^{2}+5 y^{2} \]

17455

\[ {}y^{\prime }+y-y^{{1}/{4}} = 0 \]

17543

\[ {}x^{\prime } = \frac {x \sqrt {6 x-9}}{3} \]

17891

\[ {}y^{\prime } = 2 \]

17892

\[ {}y^{\prime } = -x^{3} \]

17894

\[ {}x \sqrt {1+y^{2}}+y y^{\prime } \sqrt {x^{2}+1} = 0 \]

17895

\[ {}\sec \left (x \right )^{2} \tan \left (y\right )+\sec \left (y\right )^{2} \tan \left (x \right ) y^{\prime } = 0 \]

17896

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }+\sqrt {1-y^{2}} = 0 \]

17897

\[ {}y^{\prime } = \frac {2 x y}{x^{2}+y^{2}} \]

17898

\[ {}y^{\prime } = \frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x} \]

17899

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

17900

\[ {}\left (x +y\right ) y^{\prime } = y-x \]

17901

\[ {}x -y \cos \left (\frac {y}{x}\right )+x \cos \left (\frac {y}{x}\right ) y^{\prime } = 0 \]

17902

\[ {}3 y-7 x +7 = \left (3 x -7 y-3\right ) y^{\prime } \]

17903

\[ {}\left (x +2 y+1\right ) y^{\prime } = 2 x +4 y+3 \]

17904

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \]

17905

\[ {}\left (x +y\right )^{2} y^{\prime } = a^{2} \]

17906

\[ {}x y^{\prime }-4 y = x^{2} \sqrt {y} \]

17907

\[ {}y^{\prime } \cos \left (x \right ) = y \sin \left (x \right )+\cos \left (x \right )^{2} \]

17908

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

17909

\[ {}y^{\prime }+\frac {x y}{x^{2}+1} = \frac {1}{x \left (x^{2}+1\right )} \]

17910

\[ {}\left (x -2 x y-y^{2}\right ) y^{\prime }+y^{2} = 0 \]

17911

\[ {}x y^{\prime }+y = x y^{2} \ln \left (x \right ) \]

17912

\[ {}y^{\prime }-\frac {x y}{2 x^{2}-2}-\frac {x}{2 y} = 0 \]

17913

\[ {}y^{\prime } \left (x^{2} y^{3}+x y\right ) = 1 \]

17914

\[ {}x -y^{2}+2 x y y^{\prime } = 0 \]

17915

\[ {}y^{\prime } = \frac {y^{2}}{3}+\frac {2}{3 x^{2}} \]

17916

\[ {}y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}} = 0 \]

17917

\[ {}x y^{\prime }-3 y+y^{2} = 4 x^{2}-4 x \]

17918

\[ {}y^{\prime } = y^{2}+\frac {1}{x^{4}} \]

17919

\[ {}\left (y-x \right ) \sqrt {x^{2}+1}\, y^{\prime } = \left (1+y^{2}\right )^{{3}/{2}} \]

17920

\[ {}y^{\prime } \left (x^{2}+y^{2}+3\right ) = 2 x \left (2 y-\frac {x^{2}}{y}\right ) \]

17921

\[ {}y^{\prime } = \frac {x -y^{2}}{2 y \left (y^{2}+x \right )} \]

17922

\[ {}\left (x \left (x +y\right )+a^{2}\right ) y^{\prime } = y \left (x +y\right )+b^{2} \]

17923

\[ {}y^{\prime } = k y+f \left (x \right ) \]

17924

\[ {}y^{\prime } = y^{2}-x^{2} \]

17925

\[ {}\frac {x +y y^{\prime }}{\sqrt {1+x^{2}+y^{2}}}+\frac {-x y^{\prime }+y}{x^{2}+y^{2}} = 0 \]

17926

\[ {}\frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}} = 0 \]

17927

\[ {}\frac {\sin \left (\frac {x}{y}\right )}{y}-\frac {y \cos \left (\frac {y}{x}\right )}{x^{2}}+1+\left (\frac {\cos \left (\frac {y}{x}\right )}{x}-\frac {x \sin \left (\frac {x}{y}\right )}{y^{2}}+\frac {1}{y^{2}}\right ) y^{\prime } = 0 \]

17928

\[ {}\frac {1}{x}-\frac {y^{2}}{\left (x -y\right )^{2}}+\left (\frac {x^{2}}{\left (x -y\right )^{2}}-\frac {1}{y}\right ) y^{\prime } = 0 \]

17929

\[ {}y^{3}+2 \left (x^{2}-x y^{2}\right ) y^{\prime } = 0 \]

17930

\[ {}\left (x^{2} y^{2}-1\right ) y^{\prime }+2 x y^{3} = 0 \]

17931

\[ {}a x y^{\prime }+b y+x^{m} y^{n} \left (\alpha x y^{\prime }+\beta y\right ) = 0 \]

17932

\[ {}2 x y^{2}-y+\left (y^{2}+x +y\right ) y^{\prime } = 0 \]