5.9.68 Problems 6701 to 6800

Table 5.763: First order ode linear in derivative

#

ODE

Mathematica

Maple

17933

\[ {}y^{\prime } = 2 x y-x^{3}+x \]

17934

\[ {}y-x y^{2} \ln \left (x \right )+x y^{\prime } = 0 \]

17935

\[ {}2 x^{3}+3 x^{2} y+y^{2}-y^{3}+\left (2 y^{3}+3 x y^{2}+x^{2}-x^{3}\right ) y^{\prime } = 0 \]

17955

\[ {}y^{\prime } = \sqrt {y-x} \]

17956

\[ {}y^{\prime } = \sqrt {y-x}+1 \]

17957

\[ {}y^{\prime } = \sqrt {y} \]

17958

\[ {}y^{\prime } = y \ln \left (y\right ) \]

17959

\[ {}y^{\prime } = y \ln \left (y\right )^{2} \]

17960

\[ {}y^{\prime } = -x +\sqrt {x^{2}+2 y} \]

17961

\[ {}y^{\prime } = -x -\sqrt {x^{2}+2 y} \]

18056

\[ {}y^{\prime } = 2 x \]

18057

\[ {}x y^{\prime } = 2 y \]

18058

\[ {}y y^{\prime } = {\mathrm e}^{2 x} \]

18059

\[ {}y^{\prime } = k y \]

18062

\[ {}x y^{\prime }+y = y^{\prime } \sqrt {1-x^{2} y^{2}} \]

18063

\[ {}x y^{\prime } = y+x^{2}+y^{2} \]

18064

\[ {}y^{\prime } = \frac {x y}{x^{2}+y^{2}} \]

18065

\[ {}2 x y y^{\prime } = x^{2}+y^{2} \]

18067

\[ {}y^{\prime } = \frac {y^{2}}{x y-x^{2}} \]

18068

\[ {}\left (y \cos \left (y\right )-\sin \left (y\right )+x \right ) y^{\prime } = y \]

18069

\[ {}1+y^{2}+y^{\prime } y^{2} = 0 \]

18070

\[ {}y^{\prime } = {\mathrm e}^{3 x}-x \]

18071

\[ {}x y^{\prime } = 1 \]

18072

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

18073

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

18074

\[ {}\left (1+x \right ) y^{\prime } = x \]

18075

\[ {}\left (x^{2}+1\right ) y^{\prime } = x \]

18076

\[ {}\left (x^{3}+1\right ) y^{\prime } = x \]

18077

\[ {}\left (x^{2}+1\right ) y^{\prime } = \arctan \left (x \right ) \]

18078

\[ {}x y y^{\prime } = y-1 \]

18079

\[ {}x^{5} y^{\prime }+y^{5} = 0 \]

18080

\[ {}x y^{\prime } = \left (-2 x^{2}+1\right ) \tan \left (y\right ) \]

18081

\[ {}y^{\prime } = 2 x y \]

18082

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

18083

\[ {}\sin \left (x \right ) y^{\prime } = 1 \]

18084

\[ {}y^{\prime }+y \tan \left (x \right ) = 0 \]

18085

\[ {}y^{\prime }-y \tan \left (x \right ) = 0 \]

18086

\[ {}\left (x^{2}+1\right ) y^{\prime }+1+y^{2} = 0 \]

18087

\[ {}y \ln \left (y\right )-x y^{\prime } = 0 \]

18088

\[ {}y^{\prime } = x \,{\mathrm e}^{x} \]

18089

\[ {}y^{\prime } = 2 \sin \left (x \right ) \cos \left (x \right ) \]

18090

\[ {}y^{\prime } = \ln \left (x \right ) \]

18091

\[ {}\left (x^{2}-1\right ) y^{\prime } = 1 \]

18092

\[ {}x \left (x^{2}-4\right ) y^{\prime } = 1 \]

18093

\[ {}\left (1+x \right ) \left (x^{2}+1\right ) y^{\prime } = 2 x^{2}+x \]

18094

\[ {}y^{\prime } = {\mathrm e}^{3 x -2 y} \]

18095

\[ {}x y^{\prime } = 2 x^{2}+1 \]

18096

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

18097

\[ {}3 \cos \left (3 x \right ) \cos \left (2 y\right )-2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime } = 0 \]

18098

\[ {}y^{\prime } = {\mathrm e}^{x} \cos \left (x \right ) \]

18099

\[ {}x y y^{\prime } = \left (1+x \right ) \left (1+y\right ) \]

18100

\[ {}y^{\prime } = 2 x y+1 \]

18103

\[ {}v^{\prime } = g -\frac {k v^{2}}{m} \]

18104

\[ {}x^{2}-2 y^{2}+x y y^{\prime } = 0 \]

18105

\[ {}x^{2} y^{\prime }-3 x y-2 y^{2} = 0 \]

18106

\[ {}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \]

18107

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

18108

\[ {}x y^{\prime } = y+2 x \,{\mathrm e}^{-\frac {y}{x}} \]

18109

\[ {}x -y-\left (x +y\right ) y^{\prime } = 0 \]

18110

\[ {}x y^{\prime } = 2 x +3 y \]

18111

\[ {}x y^{\prime } = \sqrt {x^{2}+y^{2}} \]

18112

\[ {}x^{2} y^{\prime } = 2 x y+y^{2} \]

18113

\[ {}x^{3}+y^{3}-y^{2} y^{\prime } x = 0 \]

18114

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

18115

\[ {}y^{\prime } = \sin \left (x -y+1\right )^{2} \]

18116

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

18117

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

18118

\[ {}2 x -2 y+\left (y-1\right ) y^{\prime } = 0 \]

18119

\[ {}y^{\prime } = \frac {x +y-1}{x +4 y+2} \]

18120

\[ {}2 x +3 y-1-4 \left (1+x \right ) y^{\prime } = 0 \]

18121

\[ {}y^{\prime } = \frac {1-x y^{2}}{2 x^{2} y} \]

18122

\[ {}y^{\prime } = \frac {2+3 x y^{2}}{4 x^{2} y} \]

18123

\[ {}y^{\prime } = \frac {y-x y^{2}}{x +x^{2} y} \]

18124

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

18125

\[ {}\sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

18126

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

18127

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

18128

\[ {}\cos \left (x \right ) \cos \left (y\right )^{2}+2 \sin \left (x \right ) \sin \left (y\right ) \cos \left (y\right ) y^{\prime } = 0 \]

18129

\[ {}\left (\sin \left (x \right ) \sin \left (y\right )-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \left (x \right ) \cos \left (y\right ) \]

18130

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

18131

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

18132

\[ {}2 x y^{3}+y \cos \left (x \right )+\left (3 x^{2} y^{2}+\sin \left (x \right )\right ) y^{\prime } = 0 \]

18133

\[ {}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \]

18134

\[ {}2 y^{4} x +\sin \left (y\right )+\left (4 x^{2} y^{3}+x \cos \left (y\right )\right ) y^{\prime } = 0 \]

18135

\[ {}\frac {x y^{\prime }+y}{1-x^{2} y^{2}}+x = 0 \]

18136

\[ {}2 x \left (1+\sqrt {x^{2}-y}\right ) = \sqrt {x^{2}-y}\, y^{\prime } \]

18137

\[ {}x \ln \left (y\right )+x y+\left (y \ln \left (x \right )+x y\right ) y^{\prime } = 0 \]

18138

\[ {}{\mathrm e}^{y^{2}}-\csc \left (y\right ) \csc \left (x \right )^{2}+\left (2 x y \,{\mathrm e}^{y^{2}}-\csc \left (y\right ) \cot \left (y\right ) \cot \left (x \right )\right ) y^{\prime } = 0 \]

18139

\[ {}1+y^{2} \sin \left (2 x \right )-2 y \cos \left (x \right )^{2} y^{\prime } = 0 \]

18140

\[ {}\frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}} = 0 \]

18141

\[ {}3 x^{2} \left (1+\ln \left (y\right )\right )+\left (\frac {x^{3}}{y}-2 y\right ) y^{\prime } = 0 \]

18142

\[ {}\frac {-x y^{\prime }+y}{\left (x +y\right )^{2}}+y^{\prime } = 1 \]

18143

\[ {}\frac {4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac {\left (8 y^{2}-x^{2}\right ) y^{\prime }}{4 y^{3}-x^{2} y} = 0 \]

18144

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

18145

\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

18146

\[ {}x y^{\prime }+y+3 x^{3} y^{4} y^{\prime } = 0 \]

18147

\[ {}{\mathrm e}^{x}+\left ({\mathrm e}^{x} \cot \left (y\right )+2 y \csc \left (y\right )\right ) y^{\prime } = 0 \]

18148

\[ {}\left (x +2\right ) \sin \left (y\right )+x \cos \left (y\right ) y^{\prime } = 0 \]

18149

\[ {}y+\left (x -2 x^{2} y^{3}\right ) y^{\prime } = 0 \]

18150

\[ {}x +3 y^{2}+2 x y y^{\prime } = 0 \]