5.1.12 Problems 1101 to 1200

Table 5.23: First order ode

#

ODE

Mathematica

Maple

3288

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \]

3289

\[ {}\left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

3290

\[ {}x y {y^{\prime }}^{2}+\left (x y-1\right ) y^{\prime } = y \]

3291

\[ {}y^{2} {y^{\prime }}^{2}+x y y^{\prime }-2 x^{2} = 0 \]

3292

\[ {}y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2} = x^{2} \]

3293

\[ {}{y^{\prime }}^{3}+\left (x +y-2 x y\right ) {y^{\prime }}^{2}-2 y^{\prime } x y \left (x +y\right ) = 0 \]

3294

\[ {}y {y^{\prime }}^{2}+\left (y^{2}-x^{3}-x y^{2}\right ) y^{\prime }-x y \left (x^{2}+y^{2}\right ) = 0 \]

3295

\[ {}y = y^{\prime } x \left (y^{\prime }+1\right ) \]

3296

\[ {}y = x +3 \ln \left (y^{\prime }\right ) \]

3297

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 \]

3298

\[ {}y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

3299

\[ {}{y^{\prime }}^{2}+y^{2} = 1 \]

3300

\[ {}x \left ({y^{\prime }}^{2}-1\right ) = 2 y y^{\prime } \]

3301

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

3302

\[ {}2 x^{2} y+{y^{\prime }}^{2} = x^{3} y^{\prime } \]

3303

\[ {}y {y^{\prime }}^{2} = 3 x y^{\prime }+y \]

3304

\[ {}8 x +1 = y {y^{\prime }}^{2} \]

3305

\[ {}y {y^{\prime }}^{2}+2 y^{\prime }+1 = 0 \]

3306

\[ {}\left (1+{y^{\prime }}^{2}\right ) x = \left (x +y\right ) y^{\prime } \]

3307

\[ {}x^{2}-3 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

3308

\[ {}y+2 x y^{\prime } = x {y^{\prime }}^{2} \]

3309

\[ {}x = {y^{\prime }}^{2}+y^{\prime } \]

3310

\[ {}x = y-{y^{\prime }}^{3} \]

3311

\[ {}x +2 y y^{\prime } = x {y^{\prime }}^{2} \]

3312

\[ {}4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

3313

\[ {}x {y^{\prime }}^{3} = y y^{\prime }+1 \]

3314

\[ {}y \left (1+{y^{\prime }}^{2}\right ) = 2 x y^{\prime } \]

3315

\[ {}2 x +x {y^{\prime }}^{2} = 2 y y^{\prime } \]

3316

\[ {}x = y y^{\prime }+{y^{\prime }}^{2} \]

3317

\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime } = y \]

3318

\[ {}y = y^{\prime } x \left (y^{\prime }+1\right ) \]

3319

\[ {}2 x {y^{\prime }}^{3}+1 = y {y^{\prime }}^{2} \]

3320

\[ {}{y^{\prime }}^{3}+x y y^{\prime } = 2 y^{2} \]

3321

\[ {}3 {y^{\prime }}^{4} x = {y^{\prime }}^{3} y+1 \]

3322

\[ {}2 {y^{\prime }}^{5}+2 x y^{\prime } = y \]

3323

\[ {}\frac {1}{{y^{\prime }}^{2}}+x y^{\prime } = 2 y \]

3324

\[ {}2 y = 3 x y^{\prime }+4+2 \ln \left (y^{\prime }\right ) \]

3325

\[ {}y = x y^{\prime }+{y^{\prime }}^{2} \]

3326

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

3327

\[ {}y = x y^{\prime }-\sqrt {y^{\prime }} \]

3328

\[ {}y = x y^{\prime }+\ln \left (y^{\prime }\right ) \]

3329

\[ {}y = x y^{\prime }+\frac {3}{{y^{\prime }}^{2}} \]

3330

\[ {}y = x y^{\prime }-{y^{\prime }}^{{2}/{3}} \]

3331

\[ {}y = x y^{\prime }+{\mathrm e}^{y^{\prime }} \]

3332

\[ {}\left (-x y^{\prime }+y\right )^{2} = 1+{y^{\prime }}^{2} \]

3333

\[ {}x {y^{\prime }}^{2}-y y^{\prime }-2 = 0 \]

3334

\[ {}y^{2}-2 x y y^{\prime }+{y^{\prime }}^{2} \left (x^{2}-1\right ) = 0 \]

3403

\[ {}y^{\prime } = 2 \]

3404

\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \]

3405

\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \]

3406

\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \]

3407

\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \]

3408

\[ {}y^{\prime } = \arcsin \left (x \right ) \]

3409

\[ {}y^{\prime } = x y \]

3410

\[ {}y^{\prime } = x^{2} y^{2} \]

3411

\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \]

3412

\[ {}y^{\prime } \sin \left (y\right ) = x^{2} \]

3413

\[ {}x y^{\prime } = \sqrt {1-y^{2}} \]

3414

\[ {}{y^{\prime }}^{2}-y^{2} = 0 \]

3415

\[ {}{y^{\prime }}^{2}-3 y^{\prime }+2 = 0 \]

3416

\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \]

3417

\[ {}\sin \left (x \right ) y^{\prime } = 1 \]

3418

\[ {}y^{\prime } = t^{2}+3 \]

3419

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]

3420

\[ {}y^{\prime } = \sin \left (3 t \right ) \]

3421

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]

3422

\[ {}y^{\prime } = \frac {t}{t^{2}+4} \]

3423

\[ {}y^{\prime } = \ln \left (t \right ) \]

3424

\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \]

3425

\[ {}y^{\prime } = 2 y-4 \]

3426

\[ {}y^{\prime } = -y^{3} \]

3427

\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \]

3428

\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \]

3429

\[ {}y^{\prime } = \sin \left (t \right )^{2} \]

3430

\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \]

3431

\[ {}y^{\prime } = \frac {y}{t} \]

3432

\[ {}y^{\prime } = -\frac {t}{y} \]

3433

\[ {}y^{\prime } = y^{2}-y \]

3434

\[ {}y^{\prime } = y-1 \]

3435

\[ {}y^{\prime } = 1-y \]

3436

\[ {}y^{\prime } = y^{3}-y^{2} \]

3437

\[ {}y^{\prime } = 1-y^{2} \]

3438

\[ {}y^{\prime } = \left (t^{2}+1\right ) y \]

3439

\[ {}y^{\prime } = -y \]

3440

\[ {}y^{\prime } = 2 y+{\mathrm e}^{-3 t} \]

3441

\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \]

3442

\[ {}y^{\prime } = t -y \]

3443

\[ {}t y^{\prime }+2 y = \sin \left (t \right ) \]

3444

\[ {}y^{\prime } = \tan \left (t \right ) y+\sec \left (t \right ) \]

3445

\[ {}y^{\prime } = \frac {2 t y}{t^{2}+1}+t +1 \]

3446

\[ {}y^{\prime } = \tan \left (t \right ) y+\sec \left (t \right )^{3} \]

3447

\[ {}y^{\prime } = y \]

3448

\[ {}y^{\prime } = 2 y \]

3449

\[ {}t y^{\prime } = y+t^{3} \]

3450

\[ {}y^{\prime } = -\tan \left (t \right ) y+\sec \left (t \right ) \]

3451

\[ {}y^{\prime } = \frac {2 y}{t +1} \]

3452

\[ {}t y^{\prime } = -y+t^{3} \]

3453

\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \]

3454

\[ {}t \ln \left (t \right ) y^{\prime } = t \ln \left (t \right )-y \]

3455

\[ {}y^{\prime } = \frac {2 y}{-t^{2}+1}+3 \]