5.20.39 Problems 3801 to 3846

Table 5.983: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

19204

\[ {}y^{\left (6\right )}-2 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }+y = \sin \left (\frac {x}{2}\right )^{2}+{\mathrm e}^{x} \]

19205

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = 16 x^{2}+256 \]

19206

\[ {}y^{\prime \prime }+y = 3 \cos \left (x \right )^{2}+2 \sin \left (x \right )^{3} \]

19207

\[ {}y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = 96 \sin \left (2 x \right ) \cos \left (x \right ) \]

19208

\[ {}y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0 \]

19209

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y+37 \sin \left (3 x \right ) = 0 \]

19210

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 24 x \cos \left (x \right ) \]

19364

\[ {}y^{\prime \prime \prime } = f \left (x \right ) \]

19366

\[ {}y^{\prime \prime } = x +\sin \left (x \right ) \]

19367

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

19370

\[ {}y^{\prime \prime } = \frac {a}{x} \]

19374

\[ {}y^{\prime \prime } = y \]

19376

\[ {}y^{\prime \prime }-a^{2} y = 0 \]

19382

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

19400

\[ {}a y^{\prime \prime } = y^{\prime } \]

19409

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

19410

\[ {}y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

19411

\[ {}y^{\left (5\right )}-n^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

19422

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

19423

\[ {}a y^{\prime \prime \prime } = y^{\prime \prime } \]

19425

\[ {}y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

19473

\[ {}y^{\prime \prime }+y = x \]

19474

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

19475

\[ {}y^{\prime \prime }+4 y = 4 \tan \left (2 x \right ) \]

19477

\[ {}y^{\prime \prime }-y = \frac {2}{1+{\mathrm e}^{x}} \]

19529

\[ {}2 y^{\prime \prime }+9 y^{\prime }-18 y = 0 \]

19530

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

19531

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

19532

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

19533

\[ {}y^{\prime \prime }+n^{2} y = \sec \left (n x \right ) \]

19534

\[ {}y^{\prime \prime \prime }+y = \left (1+{\mathrm e}^{x}\right )^{2} \]

19535

\[ {}y^{\prime \prime }-4 y^{\prime }+y = a \cos \left (2 x \right ) \]

19536

\[ {}y^{\prime \prime \prime }+a^{2} y^{\prime } = \sin \left (a x \right ) \]

19537

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

19538

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \sin \left (x \right ) \]

19539

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2} \]

19540

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

19541

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 2 \sinh \left (2 x \right ) \]

19542

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

19543

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \sin \left (x \right ) \]

19602

\[ {}y^{\prime \prime \prime } = x \,{\mathrm e}^{x} \]

19603

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

19604

\[ {}y^{\prime \prime } = \sec \left (x \right )^{2} \]

19611

\[ {}y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]

19634

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

19638

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x} \]