5.20.38 Problems 3701 to 3800

Table 5.981: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

18879

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-8 y^{\prime }+12 y = X \left (x \right ) \]

18880

\[ {}y^{\prime \prime \prime }+y = 3+{\mathrm e}^{-x}+5 \,{\mathrm e}^{2 x} \]

18881

\[ {}y^{\prime \prime \prime }-y = \left (1+{\mathrm e}^{x}\right )^{2} \]

18882

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 3 \,{\mathrm e}^{\frac {5 x}{2}} \]

18883

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2} \]

18884

\[ {}y^{\prime \prime \prime }+8 y = x^{4}+2 x +1 \]

18885

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \cos \left (2 x \right ) \]

18886

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right ) \]

18887

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

18888

\[ {}y^{\prime \prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \]

18889

\[ {}y^{\prime \prime \prime \prime }+y = {\mathrm e}^{2 x} x \]

18890

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (x \right ) {\mathrm e}^{2 x} \]

18891

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{3 x}+{\mathrm e}^{x} \cos \left (2 x \right ) \]

18892

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

18893

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

18894

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

18895

\[ {}y^{\left (5\right )}-13 y^{\prime \prime \prime }+26 y^{\prime \prime }+82 y^{\prime }+104 y = 0 \]

18896

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}+x^{2}+x \]

18897

\[ {}y^{\prime \prime }+4 y = \sin \left (3 x \right )+{\mathrm e}^{x}+x^{2} \]

18898

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x +{\mathrm e}^{m x} \]

18899

\[ {}y^{\prime \prime }-a^{2} y = {\mathrm e}^{a x}+{\mathrm e}^{n x} \]

18900

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }-6 y^{\prime }+8 y = x \]

18901

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \left (b x +a \right ) \]

18902

\[ {}y^{\prime \prime \prime }-13 y^{\prime }+12 y = x \]

18903

\[ {}y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (m x \right ) \]

18904

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

18905

\[ {}y^{\prime \prime }+a^{2} y = \sec \left (a x \right ) \]

18906

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{2} {\mathrm e}^{3 x} \]

18907

\[ {}y^{\prime \prime }+n^{2} y = {\mathrm e}^{x} x^{4} \]

18908

\[ {}y^{\prime \prime \prime \prime }-a^{4} y = x^{4} \]

18909

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \]

18910

\[ {}y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

18911

\[ {}y^{\prime \prime }+y^{\prime }+y = \sin \left (2 x \right ) \]

18912

\[ {}y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (1+x \right ) \]

18913

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

18914

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-x} \]

18915

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{x} x^{2} \]

18916

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = x \,{\mathrm e}^{x}+{\mathrm e}^{x} \]

18917

\[ {}y^{\prime \prime }-y = x \sin \left (x \right )+\left (x^{2}+1\right ) {\mathrm e}^{x} \]

18918

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = {\mathrm e}^{x} \cos \left (2 x \right )+\cos \left (3 x \right ) \]

18919

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

18920

\[ {}y^{\prime \prime }-9 y^{\prime }+20 y = 20 x \]

18921

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = {\mathrm e}^{3 x} \]

18922

\[ {}y^{\prime \prime \prime }+y = \sin \left (x \right ) {\mathrm e}^{2 x}+{\mathrm e}^{\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

18954

\[ {}y^{\prime \prime \prime } = x \,{\mathrm e}^{x} \]

18956

\[ {}y^{\prime \prime } = x^{2} \sin \left (x \right ) \]

18957

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

18969

\[ {}y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0 \]

18970

\[ {}y^{\left (5\right )}-m^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

18986

\[ {}y^{\prime \prime \prime \prime }-a^{2} y^{\prime \prime } = 0 \]

18993

\[ {}y^{\prime \prime } = \frac {a}{x} \]

18995

\[ {}y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

18996

\[ {}y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x} \]

18999

\[ {}a y^{\prime \prime } = y^{\prime } \]

19001

\[ {}y^{\prime \prime \prime } = f \left (x \right ) \]

19159

\[ {}y^{\prime \prime }-n^{2} y = 0 \]

19160

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

19161

\[ {}2 x^{\prime \prime }+5 x^{\prime }-12 x = 0 \]

19162

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

19163

\[ {}9 x^{\prime \prime }+18 x^{\prime }-16 x = 0 \]

19164

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+3 y = 0 \]

19165

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

19166

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

19167

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = 0 \]

19168

\[ {}y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

19169

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime }-5 y = 0 \]

19170

\[ {}2 y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

19171

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

19172

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

19173

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{4 x} \]

19174

\[ {}y^{\prime \prime }-y = 2+5 x \]

19175

\[ {}y^{\prime \prime }+2 y^{\prime }-15 y = 15 x^{2} \]

19176

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{2} \]

19177

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{\frac {5 x}{2}} \]

19178

\[ {}y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{-x} \]

19179

\[ {}y^{\prime \prime }+2 p y^{\prime }+\left (p^{2}+q^{2}\right ) y = {\mathrm e}^{k x} \]

19180

\[ {}y^{\prime \prime }+9 y = \sin \left (2 x \right )+\cos \left (2 x \right ) \]

19181

\[ {}y^{\prime \prime }+a^{2} y = \cos \left (a x \right )+\cos \left (b x \right ) \]

19182

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{x}+\sin \left (2 x \right ) \]

19183

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-12 y = \cos \left (4 x \right ) \]

19184

\[ {}y^{\prime \prime }-4 y = 2 \sin \left (\frac {x}{2}\right ) \]

19185

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \]

19186

\[ {}y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 = 0 \]

19187

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = x \]

19188

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime } = x^{2}+1 \]

19189

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}+x^{2}+x \]

19190

\[ {}y^{\prime \prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \]

19191

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = \sin \left (x \right ) {\mathrm e}^{2 x} \]

19192

\[ {}y^{\prime \prime }-2 y^{\prime }+4 y = {\mathrm e}^{x} \cos \left (x \right ) \]

19193

\[ {}y^{\prime \prime }-y = \cosh \left (x \right ) \cos \left (x \right ) \]

19194

\[ {}y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (1+x \right ) \]

19195

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = a \,x^{2}+b \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

19196

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \left (x -1\right ) {\mathrm e}^{2 x} \]

19197

\[ {}y^{\prime \prime }+2 y^{\prime }+y = x \cos \left (x \right ) \]

19198

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

19199

\[ {}y^{\prime \prime \prime \prime }-y = x \sin \left (x \right ) \]

19200

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \sin \left (x \right ) \]

19201

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 8 x^{2} {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

19202

\[ {}y^{\prime \prime }+y = {\mathrm e}^{-x}+\cos \left (x \right )+x^{3}+{\mathrm e}^{x} \sin \left (x \right ) \]

19203

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = {\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]