5.24.3 Problems 201 to 300

Table 5.1019: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

1833

\[ {}4 x^{2} y^{\prime \prime }-4 x \left (1+x \right ) y^{\prime }+\left (2 x +3\right ) y = x^{{5}/{2}} {\mathrm e}^{x} \]

1834

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y = \left (3 x -1\right )^{2} {\mathrm e}^{2 x} \]

1835

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+2 y = \left (x -1\right )^{2} \]

1836

\[ {}\left (x -1\right )^{2} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+\left (1+x \right ) y = \left (x -1\right )^{3} {\mathrm e}^{x} \]

1837

\[ {}\left (x -1\right )^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 x \]

1838

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = -2 x^{2} \]

1839

\[ {}\left (1+x \right ) \left (2 x +3\right ) y^{\prime \prime }+2 \left (x +2\right ) y^{\prime }-2 y = \left (2 x +3\right )^{2} \]

2107

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

2109

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

2110

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

2111

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

2112

\[ {}x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }-2 x y^{\prime }+6 y = 0 \]

2222

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 2 x \]

2223

\[ {}4 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-5 x y^{\prime }+2 y = 30 x^{2} \]

2224

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2} \]

2225

\[ {}16 x^{4} y^{\prime \prime \prime \prime }+96 x^{3} y^{\prime \prime \prime }+72 x^{2} y^{\prime \prime }-24 x y^{\prime }+9 y = 96 x^{{5}/{2}} \]

2226

\[ {}x^{4} y^{\prime \prime \prime \prime }-4 x^{3} y^{\prime \prime \prime }+12 x^{2} y^{\prime \prime }-24 x y^{\prime }+24 y = x^{4} \]

2227

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 12 x^{2} \]

2228

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 4 x \]

2229

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = x^{3} \]

2230

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+16 x y^{\prime }-16 y = 9 x^{4} \]

2231

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x \left (1+x \right ) \]

2232

\[ {}x^{4} y^{\prime \prime \prime \prime }+3 x^{3} y^{\prime \prime \prime }-x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 9 x^{2} \]

2233

\[ {}4 x^{4} y^{\prime \prime \prime \prime }+24 x^{3} y^{\prime \prime \prime }+23 x^{2} y^{\prime \prime }-x y^{\prime }+y = 6 x \]

2234

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-6 x y^{\prime }+6 y = 40 x^{3} \]

2236

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = F \left (x \right ) \]

2238

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = F \left (x \right ) \]

2362

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

2363

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]

2373

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

2374

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

2375

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]

2385

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2386

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

2393

\[ {}y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

2394

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

2395

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2396

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2397

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

2398

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

2399

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

2400

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2401

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2410

\[ {}y^{\prime \prime }+\frac {t^{2} y}{4} = f \cos \left (t \right ) \]

2411

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

2431

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y = 0 \]

2432

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

2433

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

2434

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

2435

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2436

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2437

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

2438

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2439

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+2 y = 0 \]

2440

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

2543

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

2544

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]

2554

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

2555

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y = 0 \]

2565

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2566

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

2573

\[ {}y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

2574

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

2575

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2576

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2577

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

2578

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

2579

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

2580

\[ {}t y^{\prime \prime }-\left (1+3 t \right ) y^{\prime }+3 y = 0 \]

2581

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2582

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2591

\[ {}t^{2} y^{\prime \prime }-2 y = t^{2} \]

2592

\[ {}y^{\prime \prime }+p \left (t \right ) y^{\prime }+q \left (t \right ) y = t +1 \]

2593

\[ {}y^{\prime \prime }-\frac {2 t y^{\prime }}{t^{2}+1}+\frac {2 y}{t^{2}+1} = t^{2}+1 \]

2628

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

2629

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

2630

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

2631

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2632

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2633

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

2634

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2635

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+2 y = 0 \]

2636

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]

2637

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

2820

\[ {}z^{\prime \prime }+z^{3} = 0 \]

2821

\[ {}z^{\prime \prime }+z+z^{5} = 0 \]

2822

\[ {}z^{\prime \prime }+{\mathrm e}^{z^{2}} = 1 \]

2823

\[ {}z^{\prime \prime }+\frac {z}{1+z^{2}} = 0 \]

2824

\[ {}z^{\prime \prime }+z-2 z^{3} = 0 \]

3221

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+y = 0 \]

3222

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+16 y = 0 \]

3223

\[ {}4 x^{2} y^{\prime \prime }-16 x y^{\prime }+25 y = 0 \]

3224

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+10 y = 0 \]

3225

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }-18 y = \ln \left (x \right ) \]

3226

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = \ln \left (x^{2}\right ) \]

3227

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{3} \]

3228

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 1-x \]

3229

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x} \]

3230

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 4 x +\sin \left (\ln \left (x \right )\right ) \]

3231

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = \ln \left (x \right ) x^{2} \]