5.24.4 Problems 301 to 400

Table 5.1021: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

3232

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+3 y = \left (x -1\right ) \ln \left (x \right ) \]

3233

\[ {}4 x^{3} y^{\prime \prime \prime }+8 x^{2} y^{\prime \prime }-x y^{\prime }+y = x +\ln \left (x \right ) \]

3234

\[ {}3 x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }-10 x y^{\prime }+10 y = \frac {4}{x^{2}} \]

3235

\[ {}x^{4} y^{\prime \prime \prime \prime }+7 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }-6 x y^{\prime }-6 y = \cos \left (\ln \left (x \right )\right ) \]

3236

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }-x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right ) \]

3247

\[ {}y^{3} y^{\prime \prime }+4 = 0 \]

3248

\[ {}x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

3249

\[ {}x y^{\prime \prime } = x^{2}+1 \]

3250

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

3251

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (y^{\prime }+1\right ) = 0 \]

3252

\[ {}y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

3253

\[ {}x y^{\prime \prime }+x = y^{\prime } \]

3254

\[ {}x^{\prime \prime }+t x^{\prime } = t^{3} \]

3255

\[ {}x^{2} y^{\prime \prime } = x y^{\prime }+1 \]

3256

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

3257

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 1 \]

3258

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

3259

\[ {}y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

3260

\[ {}y^{\prime \prime } = y y^{\prime } \]

3261

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

3262

\[ {}y^{\prime \prime }+y y^{\prime } = 0 \]

3263

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

3264

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

3265

\[ {}y y^{\prime \prime }+1 = {y^{\prime }}^{2} \]

3267

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

3268

\[ {}2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

3269

\[ {}y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

3270

\[ {}y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

3271

\[ {}\left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

3273

\[ {}2 y^{\prime \prime } = {\mathrm e}^{y} \]

3274

\[ {}y^{\prime \prime } = y^{3} \]

3275

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

3276

\[ {}y y^{\prime \prime }-y^{\prime } y^{2} = {y^{\prime }}^{2} \]

3277

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

3278

\[ {}y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

3279

\[ {}\left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

3280

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]

3281

\[ {}2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]

3283

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]

3284

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]

3483

\[ {}y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \]

3492

\[ {}\frac {y^{\prime \prime }}{y}-\frac {{y^{\prime }}^{2}}{y^{2}}+\frac {2 a \coth \left (2 a x \right ) y^{\prime }}{y} = 2 a^{2} \]

3493

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

3494

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+3 \left (1+x \right ) y^{\prime }+y = x^{2} \]

3495

\[ {}\left (x -2\right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \]

3498

\[ {}2 y y^{\prime \prime \prime }+2 \left (y+3 y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} = \sin \left (x \right ) \]

3499

\[ {}x y^{\prime \prime \prime }+2 y^{\prime \prime } = A x \]

3500

\[ {}y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}+6\right ) y = {\mathrm e}^{-x^{2}} \sin \left (2 x \right ) \]

3565

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

3566

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

3567

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

3568

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 x^{2} \]

3569

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \]

3575

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

3576

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

3591

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-8 y = 0 \]

3592

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \ln \left (x \right ) x^{2} \]

3631

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 9 x \]

3707

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = 0 \]

3708

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

3709

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

3710

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-6 x y^{\prime } = 0 \]

3773

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 4 \ln \left (x \right ) \]

3774

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \cos \left (x \right ) \]

3775

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 9 \ln \left (x \right ) \]

3776

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 8 x \ln \left (x \right )^{2} \]

3777

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x^{4} \sin \left (x \right ) \]

3778

\[ {}x^{2} y^{\prime \prime }+6 x y^{\prime }+6 y = 4 \,{\mathrm e}^{2 x} \]

3779

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \frac {x^{2}}{\ln \left (x \right )} \]

3780

\[ {}x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+m^{2} y = x^{m} \ln \left (x \right )^{k} \]

3781

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0 \]

3782

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+25 y = 0 \]

3783

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

3784

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

3785

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

3786

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

3787

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+4 x^{2} y = 0 \]

3788

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y = 0 \]

3790

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+2 y = 8 x^{2} {\mathrm e}^{2 x} \]

3791

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 8 x^{4} \]

3794

\[ {}4 x^{2} y^{\prime \prime }+y = \sqrt {x}\, \ln \left (x \right ) \]

3805

\[ {}y^{\prime \prime }+x y = \sin \left (x \right ) \]

4139

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

4140

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{2}+2 \]

4165

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

4407

\[ {}y y^{\prime \prime }-y y^{\prime } = {y^{\prime }}^{2} \]

4414

\[ {}y^{\prime \prime \prime } = 2 \left (y^{\prime \prime }-1\right ) \cot \left (x \right ) \]

4426

\[ {}x y^{\prime \prime } = y^{\prime }+x \]

4432

\[ {}y y^{\prime \prime }-y^{\prime } y^{2}-{y^{\prime }}^{2} = 0 \]

4436

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

4509

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = \ln \left (x \right ) \]

4510

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = \frac {5 \ln \left (x \right )}{x^{2}} \]

4511

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 9 \ln \left (x \right ) x^{2} \]

4512

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

4513

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} \]

5990

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = x \]

5991

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = x \ln \left (x \right ) \]

5992

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x^{3} \]

5993

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2} {\mathrm e}^{-x} \]

5994

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x} \]