5.24.35 Problems 3401 to 3500

Table 5.1083: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

16491

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16492

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16493

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16494

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

16495

\[ {}\left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16496

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16497

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2} \]

16498

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16499

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16500

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 x y^{\prime }+125 y = 0 \]

16501

\[ {}x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0 \]

16502

\[ {}x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0 \]

16503

\[ {}x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0 \]

16504

\[ {}x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0 \]

16505

\[ {}x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0 \]

16506

\[ {}6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

16561

\[ {}\left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

16562

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16603

\[ {}y^{\prime \prime }-2 t y^{\prime }+t^{2} y = 0 \]

16606

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

16607

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

16608

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

16609

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16610

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

16611

\[ {}5 x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16612

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+25 y = 0 \]

16613

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 8 x \]

16622

\[ {}t \left (y y^{\prime \prime }+{y^{\prime }}^{2}\right )+y y^{\prime } = 1 \]

16907

\[ {}y^{\prime \prime \prime } x = 2 \]

16908

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

16909

\[ {}\left (x -1\right ) y^{\prime \prime } = 1 \]

16913

\[ {}y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

16914

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

16917

\[ {}y^{\prime \prime } \left (x +2\right )^{5} = 1 \]

16920

\[ {}x y^{\prime \prime } = y^{\prime } \]

16921

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

16922

\[ {}x y^{\prime \prime } = \left (2 x^{2}+1\right ) y^{\prime } \]

16923

\[ {}x y^{\prime \prime } = y^{\prime }+x^{2} \]

16924

\[ {}x \ln \left (x \right ) y^{\prime \prime } = y^{\prime } \]

16926

\[ {}2 y^{\prime \prime } = \frac {y^{\prime }}{x}+\frac {x^{2}}{y^{\prime }} \]

16927

\[ {}y^{\prime \prime \prime } = \sqrt {1-{y^{\prime \prime }}^{2}} \]

16928

\[ {}y^{\prime \prime \prime } x -y^{\prime \prime } = 0 \]

16929

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

16930

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

16931

\[ {}y^{\prime \prime } = \sqrt {1-{y^{\prime }}^{2}} \]

16932

\[ {}y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16933

\[ {}y^{\prime \prime } = \sqrt {1+y^{\prime }} \]

16934

\[ {}y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

16936

\[ {}y^{\prime \prime } = y^{\prime } \left (1+y^{\prime }\right ) \]

16937

\[ {}3 y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

16938

\[ {}y^{\prime \prime \prime }+{y^{\prime \prime }}^{2} = 0 \]

16939

\[ {}y y^{\prime \prime } = {y^{\prime }}^{2} \]

16940

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

16941

\[ {}3 y^{\prime } y^{\prime \prime } = 2 y \]

16942

\[ {}2 y^{\prime \prime } = 3 y^{2} \]

16943

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

16944

\[ {}y y^{\prime \prime } = y^{\prime }+{y^{\prime }}^{2} \]

16945

\[ {}y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16946

\[ {}2 y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

16947

\[ {}y^{3} y^{\prime \prime } = -1 \]

16948

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } y^{2} \]

16949

\[ {}y^{\prime \prime } = {\mathrm e}^{2 y} \]

16950

\[ {}2 y y^{\prime \prime }-3 {y^{\prime }}^{2} = 4 y^{2} \]

16951

\[ {}y^{\prime \prime \prime } = 3 y y^{\prime } \]

17117

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

17118

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

17119

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+6 y = 0 \]

17120

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

17121

\[ {}\left (x +2\right )^{2} y^{\prime \prime }+3 \left (x +2\right ) y^{\prime }-3 y = 0 \]

17122

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime }-2 \left (2 x +1\right ) y^{\prime }+4 y = 0 \]

17123

\[ {}x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

17124

\[ {}x^{2} y^{\prime \prime \prime } = 2 y^{\prime } \]

17125

\[ {}\left (1+x \right )^{2} y^{\prime \prime \prime }-12 y^{\prime } = 0 \]

17126

\[ {}\left (2 x +1\right )^{2} y^{\prime \prime \prime }+2 \left (2 x +1\right ) y^{\prime \prime }+y^{\prime } = 0 \]

17127

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = x \left (6-\ln \left (x \right )\right ) \]

17128

\[ {}x^{2} y^{\prime \prime }-2 y = \sin \left (\ln \left (x \right )\right ) \]

17129

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = -\frac {16 \ln \left (x \right )}{x} \]

17130

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = x^{2}-2 x +2 \]

17131

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m} \]

17132

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 2 \ln \left (x \right )^{2}+12 x \]

17133

\[ {}\left (1+x \right )^{3} y^{\prime \prime }+3 \left (1+x \right )^{2} y^{\prime }+\left (1+x \right ) y = 6 \ln \left (1+x \right ) \]

17134

\[ {}\left (x -2\right )^{2} y^{\prime \prime }-3 \left (x -2\right ) y^{\prime }+4 y = x \]

17135

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

17136

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x -3\right ) y^{\prime }-2 y = 0 \]

17137

\[ {}\left (2 x^{2}+3 x \right ) y^{\prime \prime }-6 \left (1+x \right ) y^{\prime }+6 y = 6 \]

17138

\[ {}x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

17139

\[ {}y^{\prime \prime }+\left (\tan \left (x \right )-2 \cot \left (x \right )\right ) y^{\prime }+2 \cot \left (x \right )^{2} y = 0 \]

17140

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+y \cos \left (x \right )^{2} = 0 \]

17141

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = 1 \]

17142

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 5 x^{4} \]

17143

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = \left (x -1\right )^{2} {\mathrm e}^{x} \]

17144

\[ {}y^{\prime \prime }+y^{\prime }+{\mathrm e}^{-2 x} y = {\mathrm e}^{-3 x} \]

17145

\[ {}\left (x^{4}-x^{3}\right ) y^{\prime \prime }+\left (2 x^{3}-2 x^{2}-x \right ) y^{\prime }-y = \frac {\left (x -1\right )^{2}}{x} \]

17146

\[ {}y^{\prime \prime }-y^{\prime }+y \,{\mathrm e}^{2 x} = {\mathrm e}^{2 x} x -1 \]

17147

\[ {}x \left (x -1\right ) y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+2 y = x^{2} \left (2 x -3\right ) \]

17157

\[ {}x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime } = 4 x^{3} {\mathrm e}^{x^{2}} \]

17158

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime } = 1 \]

17159

\[ {}x \ln \left (x \right ) y^{\prime \prime }-y^{\prime } = \ln \left (x \right )^{2} \]

17160

\[ {}x y^{\prime \prime }+\left (2 x -1\right ) y^{\prime } = -4 x^{2} \]

17161

\[ {}y^{\prime \prime }+\tan \left (x \right ) y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]