5.24.34 Problems 3301 to 3400

Table 5.1081: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

15577

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 6 \]

15578

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \frac {1}{x^{2}+1} \]

15583

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1+x \right )^{2}} \]

15584

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x} \]

15598

\[ {}t y^{\prime \prime }+y^{\prime }+t y = 0 \]

15785

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

15786

\[ {}x {y^{\prime \prime }}^{2}+2 y = 2 x \]

15787

\[ {}x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

15800

\[ {}x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \]

15801

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

15826

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]

15827

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

15846

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \]

15847

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

15858

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

16001

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

16179

\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

16183

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]

16184

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]

16189

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

16196

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \]

16197

\[ {}t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \]

16198

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

16199

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

16201

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

16202

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0 \]

16203

\[ {}t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \]

16204

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

16205

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

16240

\[ {}3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

16241

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

16248

\[ {}{y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \]

16249

\[ {}{y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

16354

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

16355

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

16356

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

16359

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

16360

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]

16361

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16362

\[ {}t y^{\prime \prime }+2 y^{\prime }+t y = -t \]

16363

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

16364

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]

16365

\[ {}t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]

16366

\[ {}\left (\sin \left (t \right )-\cos \left (t \right ) t \right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \]

16405

\[ {}2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

16436

\[ {}t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime } = 1 \]

16437

\[ {}\left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (2+t \right ) y^{\prime } = -2-t \]

16438

\[ {}2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y = -3 t^{2} \]

16439

\[ {}t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime } = \frac {45}{8 t^{{7}/{2}}} \]

16440

\[ {}4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \]

16441

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16442

\[ {}2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

16443

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16444

\[ {}4 x^{2} y^{\prime \prime }+17 y = 0 \]

16445

\[ {}9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]

16446

\[ {}2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

16447

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

16448

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

16449

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

16450

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

16451

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

16452

\[ {}x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 x y^{\prime }+140 y = 0 \]

16453

\[ {}x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 x y^{\prime }+100 y = 0 \]

16454

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

16455

\[ {}x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

16456

\[ {}x^{3} y^{\prime \prime \prime }+2 x y^{\prime }-2 y = 0 \]

16457

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

16458

\[ {}x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \]

16459

\[ {}x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 x y^{\prime \prime }+y^{\prime } = 0 \]

16460

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}} \]

16461

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3} \]

16462

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}} \]

16463

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}} \]

16464

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x \]

16465

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right ) \]

16466

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8 \]

16467

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2} \]

16468

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 x y^{\prime }+16 y = \frac {1}{x^{3}} \]

16469

\[ {}x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 x y^{\prime }+80 y = \frac {1}{x^{13}} \]

16470

\[ {}3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16471

\[ {}2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16472

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16473

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

16474

\[ {}x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 x y^{\prime }+20 y = 0 \]

16475

\[ {}x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 x y^{\prime }+42 y = 0 \]

16476

\[ {}x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0 \]

16477

\[ {}x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 x y^{\prime }-17 y = 0 \]

16478

\[ {}2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}} \]

16479

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right ) \]

16480

\[ {}4 x^{2} y^{\prime \prime }+y = x^{3} \]

16481

\[ {}9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x} \]

16482

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16483

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16484

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16485

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 x y^{\prime } = 0 \]

16486

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = 0 \]

16487

\[ {}x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 0 \]

16488

\[ {}x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8 \]

16489

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16490

\[ {}\left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]